面向同频干扰环境的5G机会信号定位算法研究  

Research on Localization Algorithm with 5G Opportunistic Signals in Co-channel Interference Environments

在线阅读下载全文

作  者:孙骞 丁天语 简鑫 李一兵[1,2] 于飞 SUN Qian;DING Tianyu;JIAN Xin;LI Yibing;YU Fei(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin 150001,China;College of Mathematical Sciences,Harbin Engineering University,Harbin 150001,China)

机构地区:[1]哈尔滨工程大学信息与通信工程学院,哈尔滨150001 [2]工信部先进船舶通信与信息技术重点实验室,哈尔滨150001 [3]哈尔滨工程大学数学科学学院,哈尔滨150001

出  处:《电子与信息学报》2024年第8期3136-3145,共10页Journal of Electronics & Information Technology

基  金:国家自然科学基金(52271311)。

摘  要:针对全球导航卫星系统(GNSS)拒止环境下定位精度难以保证的问题,该文设计了一种基于新无线电(NR)机会信号的定位方案,并提出一种基于干扰消除子空间追踪(ICSP)算法,解决超密集网络(UDNs)和异构网络(HetNets)环境中同频干扰对定位观测量提取精度不足的问题。通过仿真实验和通用软件无线电外设(USRP)半实物仿真,验证了ICSP算法在复杂网络环境中优化5G机会信号接收机性能、提高定位精度上的有效性。In response to the challenge of ensuring positioning accuracy in environments where the Global Navigation Satellite System(GNSS)is denied,a positioning scheme based on opportunistic New Radio(NR)signals is devised and an Interference Cancellation Subspace Pursuit(ICSP)algorithm is proposed in this paper.This algorithm aims to resolve the issue of inadequate precision in the extraction of positioning observations due to co-channel interference within Ultra-Dense Networks(UDNs)and Heterogeneous Networks(HetNets).The effectiveness of the ICSP algorithm in optimizing the performance of 5G opportunistic signal receivers and enhancing positioning accuracy in complex network environments has been validated through simulation experiments and semi-physical simulations utilizing the Universal Software Radio Peripheral(USRP).

关 键 词:机会信号导航 新无线电定位技术 干扰消除子空间追踪 同频干扰 软件无线电平台 

分 类 号:TN911.7[电子电信—通信与信息系统] TN96[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象