Two-Stage IoT Computational Task Offloading Decision-Making in MEC with Request Holding and Dynamic Eviction  

在线阅读下载全文

作  者:Dayong Wang Kamalrulnizam Bin Abu Bakar Babangida Isyaku 

机构地区:[1]Department of Computer Science,Faculty of Computing,Universiti Teknologi Malaysia,Johor Bahru,Johor,81310,Malaysia [2]Department of Computer Science,Faculty of Information Communication Technology,Sule Lamido University,Jigawa,741103,Nigeria

出  处:《Computers, Materials & Continua》2024年第8期2065-2080,共16页计算机、材料和连续体(英文)

摘  要:The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted.In addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time slots.It is resulting in TD missing potential offloading opportunities in the future.To fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic eviction.Long Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time slot.The framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning technology.Simulation results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method.

关 键 词:Decision making internet of things load prediction task offloading multi-access edge computing 

分 类 号:TP391.44[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象