检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:S.Vidivelli Manikandan Ramachandran A.Dharunbalaji
机构地区:[1]School of Computing,SASTRA Deemed University,Thanjavur,Tamilnadu,613401,India
出 处:《Computers, Materials & Continua》2024年第8期2423-2442,共20页计算机、材料和连续体(英文)
摘 要:This exploration acquaints a momentous methodology with custom chatbot improvement that focuses on pro-ficiency close by viability.We accomplish this by joining three key innovations:LangChain,Retrieval Augmented Generation(RAG),and enormous language models(LLMs)tweaked with execution proficient strategies like LoRA and QLoRA.LangChain takes into consideration fastidious fitting of chatbots to explicit purposes,guaranteeing engaged and important collaborations with clients.RAG’s web scratching capacities engage these chatbots to get to a tremendous store of data,empowering them to give exhaustive and enlightening reactions to requests.This recovered data is then decisively woven into reaction age utilizing LLMs that have been calibrated with an emphasis on execution productivity.This combination approach offers a triple advantage:further developed viability,upgraded client experience,and extended admittance to data.Chatbots become proficient at taking care of client questions precisely and productively,while instructive and logically pertinent reactions make a more regular and drawing in cooperation for clients.At last,web scratching enables chatbots to address a more extensive assortment of requests by conceding them admittance to a more extensive information base.By digging into the complexities of execution proficient LLM calibrating and underlining the basic job of web-scratched information,this examination offers a critical commitment to propelling custom chatbot plan and execution.The subsequent chatbots feature the monstrous capability of these advancements in making enlightening,easy to understand,and effective conversational specialists,eventually changing the manner in which clients cooperate with chatbots.
关 键 词:LangChain retrieval augumental generation(RAG) fine tuning
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.147.211