Development of a Lightweight Model for Handwritten Dataset Recognition: Bangladeshi City Names in Bangla Script  

在线阅读下载全文

作  者:MdMahbubur Rahman Tusher Fahmid Al Farid MdAl-Hasan Abu Saleh Musa Miah Susmita Roy Rinky Mehedi Hasan Jim Sarina Mansor MdAbdur Rahim Hezerul Abdul Karim 

机构地区:[1]Department of Computer Science and Engineering,Bangladesh Army University of Science and Technology(BAUST),Saidpur,5310,Bangladesh [2]Faculty of Engineering,Multimedia University,Cyberjaya,63100,Malaysia [3]Pabna University of Science and Technology,Pabna,6600,Bangladesh

出  处:《Computers, Materials & Continua》2024年第8期2633-2656,共24页计算机、材料和连续体(英文)

基  金:MMU Postdoctoral and Research Fellow(Account:MMUI/230023.02).

摘  要:The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting.The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document processing.Notably,no prior research has specifically targeted the unique needs of Bangla handwritten city name recognition.To bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name recognition.The emphasis on practical data for system training enhances accuracy.The research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal services.The study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN architectures.It encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and scripts.These recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.

关 键 词:Handwritten recognition Bangladeshi city names Bangla handwritten city name automated postal services 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象