Classification and Comprehension of Software Requirements Using Ensemble Learning  

在线阅读下载全文

作  者:Jalil Abbas Arshad Ahmad Syed Muqsit Shaheed Rubia Fatima Sajid Shah Mohammad Elaffendi Gauhar Ali 

机构地区:[1]School of Computer Science and Technology,Anhui University,Hefei,230039,China [2]School of Computing Sciences,Pak Austria Fachhochschule,Institute of Applied Sciences and Technology,Haripur,22620,Pakistan [3]Department of Computer Science and IT,University of Lahore,Lahore,55150,Pakistan [4]Department of Computer Science,Emerson University,Punjab,Multan,60000,Pakistan [5]EIAS(Emerging Intelligent Autonomous Systems)Data Science Lab,Prince Sultan University,Riyad,12435,Saudi Arabia

出  处:《Computers, Materials & Continua》2024年第8期2839-2855,共17页计算机、材料和连续体(英文)

基  金:This work is supported by EIAS(Emerging Intelligent Autonomous Systems)Data Science Lab,Prince Sultan University,Kingdom of Saudi Arabia,by paying the APC.

摘  要:The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes.

关 键 词:Ensemble learning machine learning non-functional requirements requirement engineering accuracy sliding window 

分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象