Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection  

在线阅读下载全文

作  者:Islam Zada Mohammed Naif Alatawi Syed Muhammad Saqlain Abdullah Alshahrani Adel Alshamran Kanwal Imran Hessa Alfraihi 

机构地区:[1]Department of Software Engineering,International Islamic University,Islamabad,25000,Pakistan [2]Information Technology Department,Faculty of Computers and Information Technology,University of Tabuk,Tabuk,71491,Saudi Arabia [3]Department of Computer Science and Artificial Intelligence,College of Computer Science and Engineering,University of Jeddah,Jeddah,21493,Saudi Arabia [4]Department of Cybersecurity,College of Computer Science and Engineering,University of Jeddah,Jeddah,21493,Saudi Arabia [5]Department of Computer Science,University of Peshawar,Peshawar,25121,Pakistan [6]Department of Information Systems,College of Computer and Information Sciences,Princess Nourah bint Abdulrahman University,Riyadh,11671,Saudi Arabia

出  处:《Computers, Materials & Continua》2024年第8期2917-2939,共23页计算机、材料和连续体(英文)

基  金:This researchwork is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R411),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

摘  要:Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance

关 键 词:Security and privacy challenges in the context of requirements engineering supervisedmachine learning malware detection windows systems comparative analysis Gaussian Naive Bayes K Nearest Neighbors Stochastic Gradient Descent Classifier Decision Tree 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP393.08[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象