UV-Based Advanced Oxidation Processes for Antibiotic Resistance Control: Efficiency, Influencing Factors, and Energy Consumption  

在线阅读下载全文

作  者:Jiarui Han Wanxin Li Yun Yang Xuanwei Zhang Siyu Bao Xiangru Zhang Tong Zhang Kenneth Mei Yee Leung 

机构地区:[1]Department of Civil and Environment Engineering,The Hong Kong University of Science and Technology,Hong Kong 999077,China [2]Department of Civil Engineering,The University of Hong Kong,Hong Kong 999077,China [3]State Key Laboratory of Marine Pollution and Department of Chemistry,City University of Hong Kong,Hong Kong 999077,China

出  处:《Engineering》2024年第6期27-39,共13页工程(英文)

基  金:supported by grants from the Research Grants Council of the Hong Kong SAR,China(T21-705/20-N and 16210221).

摘  要:Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.

关 键 词:Advanced oxidation processes Ultraviolet/chlorine Ultraviolet/hydrogen peroxide Ultraviolet/persulfate Antibiotic resistant bacteria Antibiotic resistance genes 

分 类 号:X703[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象