检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李泽稷 周学良 孙培禄[2] LI Zeji;ZHOU Xueliang;SUN Peilu(School of Mechanical Engineering,Hubei Institute of Automotive Technology,Shiyan 442002,China;School of Mechanical Engineering,Yuncheng University,Yuncheng 044000,China)
机构地区:[1]湖北汽车工业学院机械工程学院,十堰442002 [2]运城学院机械工程学院,运城044000
出 处:《现代制造工程》2024年第8期126-135,共10页Modern Manufacturing Engineering
基 金:国家自然科学基金资助项目(52075107);湖北省高等学校优秀中青年科技创新团队计划项目(T2020018)。
摘 要:为进一步提高切削加工过程刀具磨损值监测的精度,提出一种融合残差块与Swin-Transformer模型的刀具磨损监测模型。首先,采用分组卷积残差块提取信号的特征;然后,利用Swin-Transformer模型中的分块滑动窗口自注意力机制对提取的特征进行平移融合;最后,通过回归层实现刀具磨损值监测。试验结果表明,融合一层残差块与一层stage机制的Swin-Transformer模型可以有效融合刀具磨损状态监测信号的全局信息,相比其他Swin-Transformer模型,不仅模型结构简单,而且具有更高的监测精度,利用PHM2010数据集验证的MSE、MAE和R2分别达到4.471 9、1.467 5和0.995 8。To further improve the accuracy of tool wear value monitoring in the cutting machining process,a tool wear monitoring model that integrated the residual block and Swin-Transformer model was proposed.Firstly,the grouped convolutional residual block was used to extract the features of the signal.Then,the chunked sliding window self-attention mechanism in the Swin-Transformer model was used to translate the extracted features.Finally,the tool wear value prediction was realized through the regression layer.The experimental results show that the Swin-Transformer model fusing a layer of residual blocks with a layer of stage mechanism can effectively fuse the global information of tool wear state monitoring signals,which not only has a simple model structure but also has a higher monitoring accuracy compared with other Swin-Transformer models,and the MSE,MAE,and R 2 verified by utilizing the PHM2010 dataset reached 4.4719,1.4675,and 0.9958,respectively.
关 键 词:刀具 磨损监测 残差卷积神经网络 Swin-Transformer模型
分 类 号:TG713[金属学及工艺—刀具与模具] TH162[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198