检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王冬 周思航 黄健[1] 张中杰 WANG Dong;ZHOU Sihang;HUANG Jian;ZHANG Zhongjie(School of Intelligence Science,National University of Defense Technology,Changsha 410073,China)
机构地区:[1]国防科技大学智能科学学院,湖南长沙410073
出 处:《系统工程与电子技术》2024年第8期2686-2695,共10页Systems Engineering and Electronics
基 金:国家自然科学基金(62006237)资助课题。
摘 要:在处理知识图谱复杂问答任务时,传统的查询图语义解析方法需要在排序阶段对大量结构复杂的候选查询图进行语义编码,用以获得各自多维特征表示。然而,在编码过程中采用的全局最大或平均池化操作通常存在对代表性特征提取能力不足的问题。针对以上问题,提出一种基于层级池化序列匹配的最优查询图选择方法。在实现候选查询图的交互建模过程中,同时采用层级池化滑动窗口技术分层提取问句和查询图序列对的局部显著性特征与全局语义特征,使得到的特征向量更好地用于候选查询图的语义匹配打分。所提方法在两个流行的复杂问答数据集MetaQA和WebQuestionsSP上开展广泛实验。实验结果表明:引入层级池化操作能够有效提取复杂查询图序列的代表性语义特征,增强原有排序模型的交互编码能力,有助于进一步提升知识图谱复杂问答系统的性能。When dealing with complex question answering task over knowledge graph,traditional semantic parsing method for query graphs requires encoding massive candidate query graphs with complex structures in the ranking stage to obtain their respective multi-dimensional feature representations.However,the global maximum or average pooling operation used during the encoding process often suffers from insufficient extracting capability for representative feature.To address the aforementioned problem,an optimal selection method for query graphs based on hierarchical pooling sequence matching is proposed.Meanwhile,sliding window technique based on hierarchical pooling is adopted to hierarchically extract local salient features and global semantic features of question and query graph sequence pairs during the interactive modeling of candidate query graphs,making the resulting feature vectors better used for semantic matching scoring of candidate query graphs.The proposed method is extensively evaluated on two popular complex question answering datasets,MetaQA and WebQuestionsSP.Experiment results show that by introducing hierarchical pooling operation,representative semantic features of complex query graph sequences can be effectively extracted,and the interactive encoding capability of the original ranking model can be enhanced,which helps further improve the performance of complex question answering systems over knowledge graph.
关 键 词:知识图谱复杂问答 查询图语义解析 层级池化 交互编码
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49