Re-entry rocket basic flow characteristics and thermal environment of different retro-propulsion modes  

在线阅读下载全文

作  者:Yifei SU Peijie SUN Yangwen CUI Guigao LE 

机构地区:[1]School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China [2]Shanghai Institute of Aerospace System Engineering,Shanghai 200000,China [3]Southwest Institute of Technology and Engineering,Chongqing 400039,China

出  处:《Chinese Journal of Aeronautics》2024年第7期190-203,共14页中国航空学报(英文版)

基  金:co-supported by the National Level Project,China and Shanghai Municipal Major Science and Technology Project,China.In addition,the authors gratefully acknowledge the guidance on English writing and numerical methods of Professor Junfeng ZHANG from the Faculty of Engineering at Laurentian University.

摘  要:During the supersonic re-entry of multi-nozzle heavy rockets into the atmosphere,the basic flow state becomes increasingly complex due to the coupling effect between the retropropulsion plumes and the freestream.A numerical method using the hybrid Reynolds-Averaged Navier-Stokes and Large Eddy Simulation(RES)method and discrete coordinate method is developed to accurately estimate the thermal environment.In addition,finite rate chemical kinetics is used to calculate the afterburning reactions.The numerical results agree well with wind tunnel data,which confirms the validity and accuracy of the numerical method.Computations are conducted for the heavy carrier rocket re-entry from 53.1 km to 39.5 km altitude with 180°angle of attack by using three different Supersonic Retro-Propulsion(SRP)modes.The numerical results reveal that these three SRP flow fields are all Short Penetration Models(SPM).As the re-entry altitudes decrease,both the plume-plume interaction and the plume-freestream interaction become weaker.The highest temperatures in the plume shear layers of the three SRP modes increase by 8.36%,7.33%and 6.92%respectively after considering afterburning reactions,and all occur at a reentry altitude of 39.5 km.As the rocket re-enters the atmosphere,the maximum heat flux on the rocket base plate of three SRP modes stabilizes at 290,170 and 200 kW/m^(2) respectively,but the maximum heat flux on the side wall increases significantly.When the altitude declines to 39.5 km,the extreme heat flux of the three modes increase by 84.16%,49.45%and 62.97%respectively compared to that at 53.1 km.

关 键 词:Re-entry rocket MULTI-NOZZLE Supersonic retro propulsion Thermal environment Afterburning effect 

分 类 号:V43[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象