检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁燕君 王旭伟 胡继杰 陈少杰 陈玉 吕尊富 LU Yan-jun;WANG Xu-wei;HU Ji-jie;CHEN Shao-jie;CHEN Yu;LYU Zun-fu(Lin’an District Agricultural and Forestry Technology Promotion Center,Hangzhou 311399,China;Ningbo Agricultural Technology Promotion Station,Ningbo 315042,Zhejiang,China;Lin’an District Science and Technology Bureau of Hangzhou City,Hangzhou 311302,China;College of Advanced Agricultural Sciences/Key Laboratory of Agricultural Product Quality Improvement Technology in Zhejiang Province,Zhejiang A&F University,Hangzhou 311300,China)
机构地区:[1]杭州市临安区农林技术推广中心,杭州311399 [2]宁波市农技推广总站,浙江宁波315042 [3]杭州市临安区科学技术局,杭州311302 [4]浙江农林大学现代农学院/浙江省农产品品质改良技术研究重点实验室,杭州311300
出 处:《湖北农业科学》2024年第8期257-261,295,共6页Hubei Agricultural Sciences
基 金:国家自然科学基金项目(32071897,32272222);宁波市重点项目(2022S092);浙江省粮油产业技术项目。
摘 要:以商薯19和心香2个甘薯(Ipomoea batatas)品种为试验材料,通过设置不同梯度钾素处理测定叶片的光谱反射率,分别构建基于比值植被指数(RVI)的甘薯叶片钾含量和钾营养指数预测模型。结果表明,RVI与叶片钾含量构建的线性模型表明,RVI(R_(1598 nm),R_(1771 nm))对甘薯叶片钾含量的预测精度较高,回归方程为y=58.6010x-58.446(R^(2)=0.7414,RMSE=0.83),采用验证数据对线性模型进行检验,模型对不同钾肥水平处理下的甘薯叶片钾含量具有较好的预测能力(R^(2)=0.7324,RMSE=0.85);RVI与钾营养指数构建的线性模型表明,RVI(R_(700 nm),R_(1385 nm))对甘薯叶片钾营养指数的预测精度较高,回归方程为y=6.0329x-0.833(R^(2)=0.7688,RMSE=0.15),采用验证数据对线性模型进行检验,模型对不同钾肥水平处理下的甘薯叶片钾营养指数具有较好的预测能力(R^(2)=0.6395,RMSE=0.20);利用RVI能够较好监测与诊断甘薯钾素营养。Two Ipomoea batatas varieties,Shangshu 19 and Xinxiang,were used as experimental materials.By setting different gradi⁃ent potassium treatments to determine the spectral reflectance of leaves,Ipomoea batatas leaves potassium content and potassium nutri⁃ent index prediction models were constructed based on the ratio vegetation index(RVI).The results showed that the linear model con⁃structed by RVI and potassium content in leaves showed that RVI(R1598 nm,R1771 nm)had a high prediction accuracy for potassium con⁃tent in Ipomoea batatas leaves,the regression equation was y=58.6010x-58.446(R^(2)=0.7414,RMSE=0.83),using validation data to test the linear model,the model showed good predictive ability for potassium content in Ipomoea batatas leaves under different potassi⁃um fertilizer levels(R^(2)=0.7324,RMSE=0.85);the linear model constructed by RVI and potassium nutrition index indicated that RVI(R700 nm,R1385 nm)had a high prediction accuracy for the potassium nutrition index of Ipomoea batatas leaves,the regression equation was y=6.0329x-0.833(R^(2)=0.7688,RMSE=0.15),using validation data to test the linear model,the model showed good predictive ability for the potassium nutrient index of Ipomoea batatas leaves under different potassium fertilizer levels(R^(2)=0.6395,RMSE=0.20);the use of RVI could effectively monitor and diagnose potassium nutrition in Ipomoea batatas.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.81.212