检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯晓静 段克勤 石培宏 陈荣 豆明玉 HOU Xiaojing;DUAN Keqin;SHI Peihong;CHEN Rong;DOU Mingyu(School of Geography and Tourism,Shaanxi Normal University,Xi'an 710119,China)
机构地区:[1]陕西师范大学地理科学与旅游学院,西安710119
出 处:《山地学报》2024年第3期320-333,共14页Mountain Research
基 金:国家自然科学基金(42371137)。
摘 要:喜马拉雅山地区气温对全球气候变化敏感。由于海拔高、数据获取难度大,已有研究对喜马拉雅山区气候变化的认识并不充分。本研究基于高分辨率ERA5-Land数据,分析1961—2020年喜马拉雅山地区气温时空变化特征,评估其在喜马拉雅山地区的适用性。结果表明:(1)1961—2020年喜马拉雅山整体以0.13℃/10a的速率升温,但自1990年后升温速率显著增大至0.20℃/10a,以秋冬季变暖最为显著。(2)空间上,北坡升温高于南坡,东段升温快于西段。升温导致年平均0℃等温线上升100 m,且0℃等温线季节差异显著,其中秋季升高可达161 m,而春季升高仅70 m。(3)喜马拉雅山地区气温垂直变化存在海拔依赖性特征,中、东段升温峰值区位于海拔4000~5500 m处,而西段升温峰值区位于海拔3000~4000 m处。1961—2020年喜马拉雅山高海拔地区积雪面积快速减少,导致地表反照率降低进而地表吸收太阳辐射增加,形成气温升高—反照率降低—气温进一步升高的正反馈过程,这是高海拔升温显著的重要原因。全面认识喜马拉雅山高海拔地区气温的时空演变规律有利于应对变暖所导致的环境问题并提出相应策略。The Himalayas is sensitive to global climate change.Poor traffic accessibility in the Himalayas with unavailability in long-term field meteorological record in the region led to inadequacy in the scientific understanding of local climate change.Based on high-resolution ERA5-Land data,this study examined its applicability in the Himalayas and analyzed temp-spatial variation of local temperature from 1961 to 2020.(1)From 1961 to 2020,the overall temperature in the Himalayas increased at a rate of 0.13℃/10a,since 1990,the warming rate had increased significantly to 0.20℃/10a,with the most significant warming in autumn and winter.(2)Spatially,the temperature rise on the northern slope of the Himalayas was higher than that on the southern slope,and the temperature rise in the eastern section of the Himalayas was faster than that in the western section.Warming caused the annual average 0℃isotherm to rise by 100 m.The seasonal fluctuation of the 0℃isotherm was distinct,with an increase of up to 161 m in autumn but only 70 m in spring.(3)The vertical variation of temperature in the Himalayas was elevation-dependent,with the peak warming area in the middle and eastern sections arranged at an altitude of 4000 to 5500 m,while the peak warming area in the western section at an altitude of 3000 to 4000 m.(4)From 1961 to 2020,the rapid reduction of snow cover area at the high-altitude sites in the Himalayas led to a decrease in surface albedo and an increase in surface absorption of solar radiation,forming a positive feedback process of temperature increasing-albedo decreasing-temperature further increasing,which was an important reason for the significant warming at high-altitudes.A comprehensive understanding of the temporal and spatial evolution of temperature in the high-altitude Himalayas is conducive to dealing with environmental problems caused by global warming and policy making.
关 键 词:喜马拉雅山 气温变化 ERA5-Land 0 ℃等温线 海拔依赖性变暖
分 类 号:K903[历史地理—人文地理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38