检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王怡[1] 李昆[1] WANG Yi;LI Kun(College of Artificial Intelligence,Tianjin University of Science&Technology,Tianjin 300457,China)
出 处:《天津科技大学学报》2024年第4期73-80,共8页Journal of Tianjin University of Science & Technology
摘 要:针对U-Net分割算法无法提取多尺度特征、易受到伪影和噪声干扰而导致在肺部X射线图像中肺实质分割不精确的问题,提出一种基于选择性自校正卷积的U-Net改进算法。改进后的U-Net算法将普通卷积模块替换为选择性自校正卷积模块,该模块采用多分支结构提取多尺度特征信息,使用Sigmoid函数和Softmax函数对多尺度特征信息进行选择性校正,使校正后的特征信息聚焦于肺实质区域,输出特征更加具有针对性。实验表明,该方法对骰子系数、交并比、F_(1)评分结果以及对肺实质分割结果都有一定程度的提升。Aiming at the problem that U-Net segmentation algorithm cannot extract multi-scale features and is susceptible to artifacts and noise,which leads to imprecise segmentation of lung parenchymal in lung X-ray images,an improved U-Net algorithm based on Selective Self-Calibration convolution is proposed in this article.The improved U-Net algorithm replaces the common convolutional module with the Selective Self-Calibration convolution module,which adopts a multi-branch structure to extract multi-scale feature information,and uses Sigmoid function and Softmax function to selectively correct the multi-scale feature information,so that the corrected feature information focuses on the lung parenchyma region and the output features are more targeted.Experiments showed that this method brought some improvement on dice coefficient,intersection over union,F_(1) score and improved the segmentation accuracy of the lung parenchymal.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.225.105