一种利用深度学习的非均匀无记忆信源恢复方法  

Signal Recovery for Non-uniform Non-memory Sources Utilizing Deep Learning

在线阅读下载全文

作  者:王振玉 菅春晓[1] 刘成城[1] 赵安军[2] 王彦生 王亚杰 WANG Zhenyu;JIAN Chunxiao;LIU Chengcheng;ZHAO Anjun;WANG Yansheng;WANG Yajie(Information Engineering University,Zhengzhou 450001,China;Xi’an University of Architecture and Technology,Xi’an 710055,China;Big Data Center of Henan Provincial Government,Zhengzhou 450001,China)

机构地区:[1]信息工程大学,河南郑州450001 [2]西安建筑科技大学,陕西西安710055 [3]河南省政务大数据中心,河南郑州450001

出  处:《信息工程大学学报》2024年第4期379-383,共5页Journal of Information Engineering University

基  金:国家自然科学基金(62171468)。

摘  要:针对非均匀无记忆信源这一特殊自然冗余信源的接收端符号恢复问题,基于全连接神经网络模型,设计一种将接收信号的信噪比和无记忆信源的符号分布随接收数据一起作为模型输入的神经网络译码器架构。并提出一种基于此神经网络的迭代译码算法,实现在发送符号分布未知情况下的自然冗余译码。仿真结果表明,利用自然冗余可以提升接收端的符号检测性能,即使在信源分布未知的情况下也能获得理论上最优的性能。Aiming at the symbol recovery problem at the receiver side for the special natural redundancy sources of non-uniform non-memory sources,a neural network decoder architecture is proposed,which is based on the fully connected neural network model.The architecture incorporates the signalto-noise ratio of the received signal and the symbol distribution of the memoryless source along with the received data as inputs to the model.An iterative decoding algorithm based on this neural network model is proposed to realize the natural redundancy decoding in the case of unknown distributions of transmitted symbols.The simulation results show that the symbol detection performance at the receiver side can be improved by using natural redundancy.Moreover,the optimal performance can be theoretically obtained by the proposed algorithm,even when the source distribution is unknown.

关 键 词:自然冗余 符号检测 非均匀无记忆信源 深度学习 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象