Cost-Efficient Edge Caching for NOMA-Enabled IoT Services  

在线阅读下载全文

作  者:Chen Ying Xing Hua Ma Zhuo Chen Xin Huang Jiwei 

机构地区:[1]School of Computer Science,Beijing Information Science and Technology University,Beijing 100101,China [2]Beijing Key Laboratory of Petroleum Data Mining,China University of Petroleum,Beijing 102249,China

出  处:《China Communications》2024年第8期182-191,共10页中国通信(英文版)

基  金:supported in part by Beijing Natural Science Foundation under Grant L232050;in part by the Project of Cultivation for young topmotch Talents of Beijing Municipal Institutions under Grant BPHR202203225;in part by Young Elite Scientists Sponsorship Program by BAST under Grant BYESS2023031.

摘  要:Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for IoT devices,which effectively reduces the delay for acquiring data.With the increasing number of IoT devices requesting for services,the spectrum resources are generally limited.In order to effectively meet the challenge of limited spectrum resources,the Non-Orthogonal Multiple Access(NOMA)is proposed to improve the transmission efficiency.In this paper,we consider the caching scenario in a NOMA-enabled MEC system.All the devices compete for the limited resources and tend to minimize their own cost.We formulate the caching problem,and the goal is to minimize the delay cost for each individual device subject to resource constraints.We reformulate the optimization as a non-cooperative game model.We prove the existence of Nash equilibrium(NE)solution in the game model.Then,we design the Game-based Cost-Efficient Edge Caching Algorithm(GCECA)to solve the problem.The effectiveness of our GCECA algorithm is validated by both parameter analysis and comparison experiments.

关 键 词:CACHING cost Internet of Things mobile edge computing non-orthogonal multiple access 

分 类 号:TN929.5[电子电信—通信与信息系统] TP393[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象