机构地区:[1]华东理工大学化工学院,大型工业反应器工程教育部工程研究中心,化学工程联合国家重点实验室,上海200237 [2]煤液化气化及高效低碳利用全国重点实验室,上海200237
出 处:《低碳化学与化工》2024年第8期115-122,共8页Low-Carbon Chemistry and Chemical Engineering
基 金:国家自然科学基金(22178113);中央高校基本科研业务费专项(JKA01231712)。
摘 要:CO_(2)加氢制甲醇是CO_(2)综合利用的重要途径之一。In基催化剂常用于CO_(2)加氢合成甲醇反应,其甲醇选择性较高,但CO_(2)转化率普遍较低。为研究添加不同比例的Co、Zr对In基催化剂性能的影响,在保持In总物质的量分数不变的情况下,采用共沉淀法制备了不同n(Zr):n(Co)的In基催化剂,通过Ar低温物理吸附、X射线衍射(XRD)、高分辨率透射电镜(HRTEM)、X射线光电子能谱(XPS)和H_(2)程序升温还原(H_(2)-TPR)对催化剂进行了表征,并在温度为240~300℃、压力为3.0 MPa和气体空速为7200 mL/(h·g)的条件下对各催化剂的催化性能进行了测试。结果表明,在一定n(Zr):n(Co)范围内,Co、Zr同时添加的催化剂相对于单独添加Co或Zr的催化剂具有更高的CO_(2)转化率和甲醇时空产率。n(Zr):n(Co)不同会产生不同程度的金属间相互作用,影响催化剂的比表面积、颗粒尺寸和还原性能。当n(Zr):n(Co)为1:3时,催化剂具有最优的甲醇合成性能,甲醇时空产率可达178 mg/(g·h)。催化剂的CO_(2)转化率由高至低依次为Zr_(5)Co_(15)In、Zr_(2.5)Co_(17.5)In、Zr_(7.5)Co_(12.5)In、Co_(20)In、Zr_(10)Co_(10)In、Zr_(20)In和In_(100),与氧空位占比变化的趋势一致。Zr_(5)Co_(15)In催化剂具有更小的颗粒尺寸与更大的比表面积,可以暴露更多的有效活性位点,因此具有更高的还原性和更强的金属间相互作用,其CO_(2)转化率可达到13.63%,相比Co_(20)In提升了19.9%,相比Zr_(20)In提升了64.7%。CO_(2) hydrogenation to methanol is one of promising route for CO_(2) utilization.In-based catalysts has high methanol selectivity but low CO_(2) conversion rate for CO_(2) hydrogenation to methanol.In order to investigate the effects of doping different proportions of Co and Zr on the performances of In-based catalysts,In-based catalysts doped with different n(Zr):n(Co)were synthesized by co-precipitation method while keeping the same mole fraction of In in the precursor.The catalysts were characterized by low-temperature Ar physical adsorption,X-ray diffraction(XRD),high resolution transmission electron microscope(HRTEM),X-ray photoelectron spectroscopy(XPS)and H_(2) temperature-programmed reduction(H_(2)-TPR).The catalytic performances of each catalyst were tested under the conditions of temperature from 240℃to 300℃,pressure of 3.0 MPa and gas space velocity of 7200 mL/(h·g).The results show that the catalysts with Co and Zr at the same time has a higher CO_(2) conversion rate and methanol time-space yield than the catalysts with Co or Zr alone in a certain n(Zr):n(Co)range.n(Zr):n(Co)will produce different degrees of metal-to-metal interactions,which will affect the specific surface area,particle size and reduction performance of the catalysts.When the doped n(Zr):n(Co)is 1:3,the catalyst has the best methanol synthesis ability and the methanol time-space yield is up to 178 mg/(g·h).The CO_(2) conversion rate decreases in the order:Zr_(5)Co_(15)In,Zr_(2.5)Co_(17.5)In,Zr_(7.5)Co_(12.5)In,Co_(20)In,Zr_(10)Co_(10)In,Zr_(20)In and In_(100),which is consistent with the trend of oxygen vacancy ratio.The Zr_(5)Co_(15)In catalyst has a smaller particle size with a larger specific surface area,which can expose more active sites,and has higher reducibility and stronger intermetallic interactions.The CO_(2) conversion rate of Zr_(5)Co_(15)In can reach 13.63%,which is 19.9%higher than Co_(20)In and 64.7%higher than Zr_(20)In.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...