A topic-controllable keywords-to-text generator with knowledge base network  

在线阅读下载全文

作  者:Li He Kaize Shi Dingxian Wang Xianzhi Wang Guandong Xu 

机构地区:[1]University of Technology Sydney,Broadway,Sydney,Australia [2]Etsy.com,Seattle,Washington,USA

出  处:《CAAI Transactions on Intelligence Technology》2024年第3期585-594,共10页智能技术学报(英文)

基  金:Australian Research Council,Grant/Award Numbers:DP22010371,LE220100078。

摘  要:With the introduction of more recent deep learning models such as encoder-decoder,text generation frameworks have gained a lot of popularity.In Natural Language Generation(NLG),controlling the information and style of the output produced is a crucial and challenging task.The purpose of this paper is to develop informative and controllable text using social media language by incorporating topic knowledge into a keyword-to-text framework.A novel Topic-Controllable Key-to-Text(TC-K2T)generator that focuses on the issues of ignoring unordered keywords and utilising subject-controlled information from previous research is presented.TC-K2T is built on the framework of conditional language encoders.In order to guide the model to produce an informative and controllable language,the generator first inputs unordered keywords and uses subjects to simulate prior human knowledge.Using an additional probability term,the model in-creases the likelihood of topic words appearing in the generated text to bias the overall distribution.The proposed TC-K2T can produce more informative and controllable senescence,outperforming state-of-the-art models,according to empirical research on automatic evaluation metrics and human annotations.

关 键 词:artificial intelligence techniques artificial neural networks deep learning 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象