低地球轨道下基于TD3算法的通用轨道转移控制  

General Orbit Transfer Control Based on TD3 Algorithm in Low Earth Orbit

在线阅读下载全文

作  者:曹海涛 邱鹏鹏 蔡霞[1] CAO Haitao;QIU Pengpeng;CAI Xia(School of Computer Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)

机构地区:[1]浙江理工大学计算机科学与技术学院,浙江杭州310018

出  处:《软件工程》2024年第9期6-9,共4页Software Engineering

摘  要:为应对低地球轨道下潜在的航天器脉冲式轨道转移任务挑战,提出一种用深度强化学习算法建立轨道转移通用控制模型的方法,以减少人工干预,解决反应不及时等问题。通过对轨道动力学的建模和对马尔可夫决策过程的设计,成功将TD3(Twin Delayed Deep Deterministic Policy Gradient)算法运用于轨道转移决策,实现高度自主的脉冲式点火控制器的设计。实验结果表明,使用TD3算法建立的脉冲式点火控制器,在不同的轨道转移任务下自主到达目标轨道的成功率可达96.1%,同时完成了轨道5个根数的收敛,证明TD3算法用于解决该问题的可行性与有效性。To address potential impulsive orbit transfer tasks for spacecraft in low earth orbit,this paper proposes a method to establish a general control model for orbit transfer using deep reinforcement learning.This method aims to reduce human intervention and address issues related to delayed responses.By modeling orbital dynamics and designing a Markov decision process,the TD3(Twin Delayed Deep Deterministic Policy Gradient)algorithm is successfully applied to transfer decisions,achieving highly autonomous design of impulse ignition controllers.Experimental results demonstrate that the impulse ignition controller established with the TD3 algorithm can autonomously reach the target orbit in various orbit transfer tasks,with a success rate of up to 96.1%,and the convergence of the five orbital parameters is achieved simultaneously,demonstrating the feasibility and effectiveness of the TD3 algorithm in addressing this problem.

关 键 词:轨道转移 深度强化学习 TD3算法 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象