检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈薇 李红梅[1] 陶苑 朱学玲[1] SHEN Wei;LI Hongmei;TAO Yuan;ZHU Xueling(School of Big Data and Artificial Intelligence,Anhui Xinhua University,Hefei 230088,China)
机构地区:[1]安徽新华学院大数据与人工智能学院,安徽合肥230088
出 处:《现代信息科技》2024年第15期36-41,共6页Modern Information Technology
基 金:安徽省省级质量工程项目(2018mooc434,2020jxtd120,2020mooc188);安徽省大学生创新训练项目(S202212216038,S202212216023)。
摘 要:随着深度学习在商品识别领域的发展,饮料作为常见的商品,将饮料识别技术应用于自助饮料售卖柜中具有一定的研究意义和价值。为了减少饮料类别特征相似误检,提出了一种基于改进YOLOv4的饮料识别算法,通过在基础网络CSPDarknet53的每组残差模块之间增加通道注意力机制来增强饮料区域特征信息。实验结果表明,改进后的YOLOv4模型mAP值为92.43%,比改进前提高了1.74%,具有较好的实际应用价值。With the development of Deep Learning in the field of product identification,beverage as a common product,applying beverage recognition technology to self-service beverage cabinets has certain research significance and value.In order to reduce the misconduct of the beverage category due to similar characteristics,a beverage recognition algorithm based on improved YOLOv4 is proposed.By increasing the Channel Attention Mechanism between the residual modules of the basic network CSPDarknet53,the characteristic information of the beverage area is enhanced.The experimental results show that the mAP value of the improved YOLOv4 reaches 92.43%,which is about 1.74%higher than that before improvement,and the model has good practical application value.
关 键 词:饮料识别 CSPDarknet53 YOLOv4 通道注意力机制
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.221.185