油气井多相流虚拟计量研究现状与展望  被引量:3

Research status and prospect of virtual metering of multiphase flow in oil and gas wells

在线阅读下载全文

作  者:矫欣雨 檀朝东[2] 朱永乐 魏方方 蔡岳 檀庭庄 张汇 JIAO Xinyu;TAN Chaodong;ZHU Yongle;WEI Fangfang;CAI Yue;TAN Tingzhuang;ZHANG Hui(School of Petroleum Engineering,China University of Petroleum(Beijing),Beijing 102200,China;Department of Automation,China University of Petroleum(Beijing),Beijing 102200,China;China National Petroleum Corporation Great Wall drilling Engineering Co.,Ltd.,Panjin 124000,China;Anhui FirstCon Instrument Co.,Ltd.,Chizhou 247210,China;Xinjiang Oilfield data Co.,Ltd.,Karamay 834000,China)

机构地区:[1]中国石油大学(北京)石油工程学院,北京102200 [2]中国石油大学(北京)自动化系,北京102200 [3]中国石油集团长城钻探工程有限公司,辽宁盘锦124000 [4]安徽中控仪表有限公司,安徽池州247200 [5]新疆油田公司数据公司,新疆克拉玛依834000

出  处:《工业计量》2024年第4期90-97,共8页Industrial Metrology

基  金:国家自然科学基金项目(51974327);安徽省重点研究与开发计划项目(201904a05020028)。

摘  要:文章阐述了时频分析、机理仿真、数据驱动、机理与数据驱动融合等技术在油气井多相流虚拟计量领域的研究现状与应用进展,讨论了油气井多相流虚拟计量的四种模型的优点和局限性,指出基于物理约束的油气井虚拟计量深度学习模型,能用较少的样本学习获得较好泛化能力的虚拟计量模型,计量精度高、计算速度快,成为油气井多相流虚拟计量技术的研究热点和未来发展趋势。This paper describes the research status and application progress of time-frequency analysis,mechanism simulation,data-driven,mechanism and data-driven fusion in the field of virtual metering of multiphase flow in oil and gas wells.this paper discusses the advantages and limitations of four models of virtual metering of multiphase flow in oil and gas wells,and points out that the depth learning model of virtual metering of oil and gas wells based on physical constraints can obtain a virtual metering model with better generalization ability with fewer samples.With high metering accuracy and fast calculation speed,it has become the research focus and future development trend of virtual metering technology for multiphase flow in oil and gas wells.

关 键 词:虚拟计量 时频分析 物理约束 深度学习 灰盒模型 发展趋势 

分 类 号:TE863.1[石油与天然气工程—油气储运工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象