Global Solutions to Nonconvex Problems by Evolution of Hamilton-Jacobi PDEs  

在线阅读下载全文

作  者:Howard Heaton Samy Wu Fung Stanley Osher 

机构地区:[1]Typal Research,Typal LLC,Los Angeles,USA [2]Department of Applied Mathematics and Statistics,Colorado School of Mines,Golden,USA [3]Department Mathematics,UCLA,Los Angeles,USA

出  处:《Communications on Applied Mathematics and Computation》2024年第2期790-810,共21页应用数学与计算数学学报(英文)

基  金:partially funded by AFOSR MURI FA9550-18-502,ONR N00014-18-1-2527,N00014-18-20-1-2093,N00014-20-1-2787;supported by the NSF Graduate Research Fellowship under Grant No.DGE-1650604.

摘  要:Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically only guarantee convergence to local minima.This work presents Hamilton-Jacobi-based Moreau adaptive descent(HJ-MAD),a zero-order algorithm with guaranteed convergence to global minima,assuming continuity of the objective function.The core idea is to compute gradients of the Moreau envelope of the objective(which is"piece-wise convex")with adaptive smoothing parameters.Gradients of the Moreau envelope(i.e.,proximal operators)are approximated via the Hopf-Lax formula for the viscous Hamilton-Jacobi equation.Our numerical examples illustrate global convergence.

关 键 词:Global optimization Moreau envelope HAMILTON-JACOBI Hopf-Lax-Cole-Hopf Proximals Zero-order optimization 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象