检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wes Whiting Bao Wang Jack Xin
机构地区:[1]Department of Mathematics,University of California,Irvine,CA,USA [2]Department of Mathematics,Scientific Computing and Imaging Institute,University of Utah,Salt Lake City,UT,USA
出 处:《Communications on Applied Mathematics and Computation》2024年第2期1175-1188,共14页应用数学与计算数学学报(英文)
基 金:partially supported by NSF Grants DMS-1854434,DMS-1952644,and DMS-2151235 at UC Irvine;supported by NSF Grants DMS-1924935,DMS-1952339,DMS-2110145,DMS-2152762,and DMS-2208361,and DOE Grants DE-SC0021142 and DE-SC0002722.
摘 要:We prove,under mild conditions,the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model,both in batch gradient descent and stochastic gradient descent.We also discuss a Riemannian version of the Adam algorithm.We show numerical simulations of these algorithms on various benchmarks.
关 键 词:Hyperbolic neural network Riemannian gradient descent Riemannian Adam(RAdam) Training convergence
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.93.225