l_(p)(0

Singular value half thresholding algorithm forl_(p)(0

在线阅读下载全文

作  者:彭定涛 张弦 易守鱼 Dingtao Peng;Xian Zhang;Shouyu Yi

机构地区:[1]贵州大学数学与统计学院,贵阳550025 [2]贵州省博弈决策与控制系统重点实验室,贵阳550025

出  处:《中国科学:数学》2024年第8期1123-1140,共18页Scientia Sinica:Mathematica

基  金:国家自然科学基金(批准号:12261020,11861020);贵州省科技计划(批准号:黔科合基础-ZK[2021]一般009)资助项目。

摘  要:本文研究一类低秩矩阵优化问题,其中惩罚项为目标矩阵奇异值的l_(p)(0<p<1)正则函数.基于半阈值函数在稀疏/低秩恢复问题中的良好性能,本文提出奇异值半阈值(singular value half thresholding,SVHT)算法来求解l_(p)正则矩阵优化问题.SVHT算法的主要迭代利用了子问题的闭式解,但与现有算法不同,其本质上是对目标函数在当前点进行局部1/2近似,而不是局部线性或局部二次近似.通过构造目标函数的Lipschitz和非Lipschitz近似函数,本文证明了SVHT算法生成序列的任意聚点都是问题的一阶稳定点.在数值实验中,利用模拟数据和实际图像数据的低秩矩阵补全问题对SVHT算法进行测试.大量的数值结果表明,SVHT算法对低秩矩阵优化问题在速度、精度和鲁棒性等方面都表现优异.In this paper,we study the low-rank matrix optimization problem where the penalty term is thel_(p)(0<p<1)regularization.Inspired by the good performance of the half thresholding function in sparse/low-rank recovery problems,we propose a singular value half thresholding(SVHT)algorithm to solve thel_(p)regularized matrix optimization problem.The main iteration in the SVHT algorithm uses the closed-form solution of the subproblem to make a local 1/2 approximation to the objective function at the current point instead of a local linear or local quadratic approximation.By constructing Lipschitz and non-Lipschitz approximate functions of the objective function,we prove that any accumulation point of the sequence generated by the SVHT algorithm is a first-order stationary point of the problem.In numerical experiments,we test the SVHT algorithm through low-rank matrix completion problems using both simulated and real image data.Extensive numerical results show the superior efficiency of the SVHT algorithm for low-rank matrix optimization problems in terms of speed,accuracy,and robustness.

关 键 词:低秩矩阵优化问题 矩阵l_(p)正则 闭式解 奇异值半阈值算法 一阶稳定点 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象