检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhiyong Peng Yadong Liu Changlin Han Zongtan Zhou
机构地区:[1]National University of Defense Technology,Changsha,China
出 处:《CAAI Transactions on Intelligence Technology》2024年第4期973-981,共9页智能技术学报(英文)
基 金:National Natural Science Foundation of China,Grant/Award Number:U19A2083。
摘 要:Offline reinforcement learning(RL)aims to learn policies entirely from passively collected datasets,making it a data‐driven decision method.One of the main challenges in offline RL is the distribution shift problem,which causes the algorithm to visit out‐of‐distribution(OOD)samples.The distribution shift can be mitigated by constraining the divergence between the target policy and the behaviour policy.However,this method can overly constrain the target policy and impair the algorithm's performance,as it does not directly distinguish between in‐distribution and OOD samples.In addition,it is difficult to learn and represent multi‐modal behaviour policy when the datasets are collected by several different behaviour policies.To overcome these drawbacks,the au-thors address the distribution shift problem by implicit policy constraints with energy‐based models(EBMs)rather than explicitly modelling the behaviour policy.The EBM is powerful for representing complex multi‐modal distributions as well as the ability to distinguish in‐distribution samples and OODs.Experimental results show that their method significantly outperforms the explicit policy constraint method and other base-lines.In addition,the learnt energy model can be used to indicate OOD visits and alert the possible failure.
关 键 词:artificial intelligence artificial neural network learning(artificial intelligence) planning(artificial intelligence)
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49