基于强化层次模糊熵的柴油机故障诊断方法  

Diesel Engine Fault Diagnosis Method Based on Enhanced Hierarchical Fuzzy Entropy

在线阅读下载全文

作  者:宋业栋 马光伟 朱小龙 张俊红[3] SONG Yedong;MA Guangwei;ZHU Xiaolong;ZHANG Junhong(State Key Laboratory of Engine Reliability Weifang,261061,China;Weichai Power Co.,Ltd.Weifang,261061,China;State Key Laboratory of Engines,Tianjin University Tianjin,300072,China)

机构地区:[1]内燃机可靠性国家重点实验室,潍坊261061 [2]潍柴动力股份有限公司,潍坊261061 [3]天津大学内燃机燃烧学国家重点实验室,天津300072

出  处:《振动.测试与诊断》2024年第4期814-820,834,共8页Journal of Vibration,Measurement & Diagnosis

基  金:内燃机可靠性国家重点实验室开放课题资助项目(skler-202009);天津市研究生科研创新资助项目(2021YJSB182)。

摘  要:针对多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)算法中多尺度化过程采用滑动均值滤波器导致原始信号高频信息丢失的问题,提出强化层次模糊熵方法(enhanced hierarchical fuzzy entropy,简称EHFE),用于表征原始信号中富含的高低频故障模式信息。结合萤火虫算法优化支持向量机(firefly algorithm optimized support vector machine,简称FAOSVM),提出一种基于EHFE和FAOSVM的柴油机故障诊断方法。柴油机试验数据对比分析表明:相比于现有方法,所提出方法能够充分表征柴油机故障信号富含的模式信息,并且能够有效识别柴油机正时齿轮故障,识别精度达到99.6%,在极小样本下也能达到较好的识别精度。In order to solve the problem that the high frequency information of the original signal is lost due to the use of moving mean filter in the multi-scale fuzzy entropy(MFE)algorithm,enhanced hierarchical fuzzy entropy(EHFE)algorithm is proposed to characterize the high and low frequency fault mode information rich in the original signal.Combined with firefly algorithm optimized support vector machine(FAOSVM),a diesel engine fault diagnosis method based on EHFE and FAOSVM is proposed.The experimental data of diesel engine are analyzed.The results show that compared with the existing methods,the proposed method can fully characterize the mode information of diesel engine fault signal,and effectively identify the fault of timing gear of diesel engine,and the identification accuracy reaches 99.6%.In particular,it can also achieve better recognition accuracy under very small samples.

关 键 词:强化层次模糊熵 柴油机 正时齿轮 故障诊断 萤火虫算法优化支持向量机 

分 类 号:TH17[机械工程—机械制造及自动化] TK428[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象