基于CZ-BWT改进的LZW压缩算法在电力报文中的应用  被引量:1

Application ofimproved LZW compression algorithm based on CZ-BWT in power message

在线阅读下载全文

作  者:周航 潘小辉 孙佳炜[1] 腾力阳 江结林 ZHOU Hang;PAN Xiaohui;SUN Jiawei;TENG Liyang;JIANG Jielin(Nanjing Power Supply Branch of State Grid Jiangsu Electric Power,Nanjing 210019,China;School of Software,Nanjing University of Information Science and Technology,Nanjing 210044,China)

机构地区:[1]国网南京供电公司,江苏南京210019 [2]南京信息工程大学软件学院,江苏南京210044

出  处:《计算机集成制造系统》2024年第8期2947-2953,共7页Computer Integrated Manufacturing Systems

基  金:国家电网公司科技资助项目(J2021167)。

摘  要:随着电网远动信息数据量日益剧增,对有限的硬件存储和网络带宽带来严峻考验。通过对报文数据的无损压缩研究以缓解硬件设备压力,确保数据解压后能无损还原出压缩之前的数据显得尤为重要。针对IEC60870-5-104报文特有结构及LZW(Lempel-Ziv-Welch)的特点,提出基于截断CZ-BWT(Burrows-Wheeler transform)改进的LZW报文压缩算法。首先对输入的IEC60870-5-104报文进行CZ-BWT转换作为预处理,增大报文内容的相关性;其次用LZW算法对转换后的数据进行压缩操作。实验结果表明,基于CZ-BWT改进的LZW算法的压缩率优于传统LZW算法。此外,在压缩和解压速度方面,相比于大部分的压缩算法而言,具有一定优势。The increasing amount of telecontrol information in the power grid brings severe challenges to the limited hardware storage performance and network bandwidth.It is particularly important to study the lossless compression of message data to relieve the pressure of hardware equipment and ensure that the data before compression can be restored losslessly after decompression.Aiming at the unique structure of IEC60870-5-104 message and the characteristics of Lempel-Ziv-Welch(LZW),an improved LZW algorithm based on truncated Burrows-Wheeler Transform(CZ-BWT)was proposed.The input IEC60870-5-104 message was preprocessed by CZ-BWT conversion to increase the relevance of the message content.LZW algorithm was used to compress the converted data.The experimental results showed that the compression ratio of the improved LZW algorithm based on CZ-BWT was better than that of the traditional LZW algorithm.In addition,compared with most compression algorithms,it had certain advantages in compression and decompression speed.

关 键 词:数据压缩 LZW算法 远动信息规约 无损压缩 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象