基于两阶卷积神经网络训练有限心电数据的心脏骤停早期分类识别算法  被引量:2

Early classification and recognition algorithm for sudden cardiac arrest based on limited electrocardiogram data trained with a two-stages convolutional neural network

在线阅读下载全文

作  者:茶兴增 张月 张翼飞 苏叶 赖大坤[1] CHA Xingzeng;ZHANG Yue;ZHANG Yifei;SU Ye;LAI Dakun(School of Electronic Science and Engineering,University of Electronic Science and technology,Chengdu 610054,P.R.China;Department of Cardiovascular Ultrasound and Cardiology,Sichuan Academy of Medical Sciences&Sichuan Provincial People's Hospital,Chengdu 610072,P.R.China)

机构地区:[1]电子科技大学电子科学与工程学院,成都610054 [2]四川省医学科学院四川省人民医院心血管超声及心功能科,成都610072

出  处:《生物医学工程学杂志》2024年第4期692-699,共8页Journal of Biomedical Engineering

基  金:国家自然科学基金(61771100)。

摘  要:心脏骤停(SCA)是一种致命性心律失常,会对人体生命健康造成严重威胁。基于目前临床记录的心脏猝死(SCD)心电图(ECG)数据极其有限,本文提出了一种基于深度迁移学习的心脏骤停早期预估及分类算法。本文算法在有限的ECG数据训练下,通过提取心脏骤停发作前的心率变异性特征,并送入轻量级卷积神经网络模型进行预训练和微调训练两个阶段的深度迁移学习,实现神经网络模型对心脏骤停高危ECG信号的早期分类识别和预估。基于国际公开ECG数据库中20个心脏猝死患者和18个窦性心律患者的16788条30 s心率特征片段,本文采用十折交叉量化验证的算法性能评估实验结果显示,对心脏骤停发作前30 min预测的平均准确度(Acc)、灵敏度(Sen)和特异度(Spe)分别为91.79%、87.00%和96.63%;而对不同患者的平均预估准确度达到96.58%。相较于已报道的传统机器学习算法,本文方法不仅有助于解决深度学习模型对大量训练数据的要求,而且能够更加早期、准确地检测和识别心脏骤停发作前的高危ECG征兆。Sudden cardiac arrest(SCA)is a lethal cardiac arrhythmia that poses a serious threat to human life and health.However,clinical records of sudden cardiac death(SCD)electrocardiogram(ECG)data are extremely limited.This paper proposes an early prediction and classification algorithm for SCA based on deep transfer learning.With limited ECG data,it extracts heart rate variability features before the onset of SCA and utilizes a lightweight convolutional neural network model for pre-training and fine-tuning in two stages of deep transfer learning.This achieves early classification,recognition and prediction of high-risk ECG signals for SCA by neural network models.Based on 1678830-second heart rate feature segments from 20 SCA patients and 18 sinus rhythm patients in the international publicly available ECG database,the algorithm performance evaluation through ten-fold cross-validation shows that the average accuracy(Acc),sensitivity(Sen),and specificity(Spe)for predicting the onset of SCA in the 30 minutes prior to the event are 91.79%,87.00%,and 96.63%,respectively.The average estimation accuracy for different patients reaches 96.58%.Compared to traditional machine learning algorithms reported in existing literatures,the method proposed in this paper helps address the requirement of large training datasets for deep learning models and enables early and accurate detection and identification of high-risk ECG signs before the onset of SCA.

关 键 词:心脏骤停 心电图 心率特征 快速反应系统 深度迁移学习 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术] R541.78[医药卫生—心血管疾病]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象