检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱文东 拓龙龙 ZHU Wendong;TUO Longlong(Shilawusu Coal Mine,Inner Mongolia Haosheng Coal Industry Co.,Ltd.,Ordos 017212,China)
机构地区:[1]内蒙古昊盛煤业有限公司石拉乌素煤矿,内蒙古鄂尔多斯017212
出 处:《电声技术》2024年第8期147-149,共3页Audio Engineering
摘 要:深入分析声音增强技术的基本原理,重点探讨该技术在瓦斯泄漏定点监测中的应用。通过自适应滤波、谱减法、盲源分离等算法,对微弱泄漏声音进行降噪增强,结合梅尔倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)、支持向量机(Support Vector Machine,SVM)等模式识别方法,实现泄漏声音的可靠识别。工程应用表明,该方案可显著提高瓦斯泄漏监测的灵敏度和可靠性。This article provides an in-depth analysis of the basic principles of sound enhancement technology,with a focus on exploring its application in fixed-point monitoring of gas leaks.By using adaptive filtering,spectral subtraction,blind source separation and other algorithms,weak leaked sound is denoised and enhanced.Combined with pattern recognition methods such as Mel Frequency Cepstrum Coefficient(MFCC)and Support Vector Machine(SVM),reliable recognition of leaked sound is achieved.Engineering applications have shown that this scheme can significantly improve the sensitivity and reliability of gas leakage monitoring.
分 类 号:TD712.55[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222