An improved high-fidelity adaptive model for integrated inlet-engine-nozzle based on mechanismdata fusion  

在线阅读下载全文

作  者:Chen WANG Ziyang YU Xian DU Ximing SUN 

机构地区:[1]School of Control Science and Engineering,Dalian University of Technology,Dalian 116024,China [2]Key Laboratory of Intelligent Control and Optimization for Industrial Equipment,Ministry of Education,Dalian University of Technology,Dalian 116024,China

出  处:《Chinese Journal of Aeronautics》2024年第8期190-207,共18页中国航空学报(英文版)

基  金:co-supported by the National Natural Science Foundation of China(Nos.61890921,61890924);the National Science and Technology Major Project,China(No.J2019-1-0019-0018).

摘  要:Nowadays,there has been an increasing focus on integrated flight propulsion control and the inlet-exhaust design for the aero-propulsion system.Traditional component-level models are inadequate due to installed performance deviations and mismatches between the real engine and the model,failing to meet the accuracy requirements of supersonic conditions.This paper establishes a quasi-one-dimensional model for the inlet-exhaust system and conducts experimental calibration.Additionally,a mechanism-data fusion adaptive modeling scheme using an Extreme Learning Machine based on the Salp Swarm Algorithm(SSA-ELM)is proposed.The study reveals the inlet model’s efficacy in reflecting installed performance,flow matching,and mitigating pressure distortion,while the nozzle model accurately predicts flow coefficients and thrust coefficients,and identifies various operational states.The model’s output closely aligns with typical experimental parameters.By combining offline optimization and online adaptive correction,the mechanismdata fusion adaptive model substantially reduces output errors during regular flights and varying levels of degradation,and effectively handles gradual degradation within a single flight cycle.Notably,the mechanism-data fusion adaptive model holistically addresses total pressure errors within the inlet-exhaust system and normal shock location correction.This approach significantly curbs performance deviations in supersonic conditions.For example,at Ma=2.0,the system error impressively drops from 34.17%to merely 6.54%,while errors for other flight conditions consistently stay below the 2.95%threshold.These findings underscore the clear superiority of the proposed method.

关 键 词:Aero-propulsion system Integrated inlet-enginenozzle Component-level model On-board adaptive model Mechanism-data fusion Extreme learning machine 

分 类 号:V261.5[航空宇航科学与技术—航空宇航制造工程] TG662[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象