Few-shot incremental radar target recognition framework based on scattering-topology properties  

在线阅读下载全文

作  者:Chenxuan LI Weigang ZHU Bakun ZHU Yonggang LI 

机构地区:[1]Graduate School,Space Engineering University,Beijing 101400,China [2]Department of Electronic and Optical Engineering,Space Engineering University,Beijing 101400,China

出  处:《Chinese Journal of Aeronautics》2024年第8期246-260,共15页中国航空学报(英文版)

摘  要:The continuous emergence of new targets in open scenarios leads to a substantial decrease in the performance of Inverse Synthetic Aperture Radar(ISAR)recognition systems.Also,data scarcity further exacerbates the challenge of identifying new classes of ISAR targets.In this paper,a few-shot incremental target recognition framework based on Scattering-Topology Properties(STPIL)is proposed.Specifically,STPIL extracts scattering-topology properties of ISAR targets as recognition features.Meanwhile,the pseudo-incremental training strategy effectively alleviates the algorithm’s forgetting of old knowledge,and improves compatibility with new classes.Besides,a feature embedding network,with few parameters,is designed based on the graph neural network.This embedding network is highly adaptable to changes in data distribution.Additionally,STPIL fully considers the joint distribution and marginal distribution in scattering features,and uses the Brownian distance metric module to make the scattering-topology features more discriminative.Experimental results on both the simulation dataset and the public measured data indicate that STPIL can effectively balance new classes with old classes,and has superior performance to other advanced methods in the incremental recognition of targets.

关 键 词:Brownian distance metric Graph neural networks Incremental learning Inverse Synthetic Aperture Radar(ISAR) SCATTERING 

分 类 号:TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象