Cooperative decision-making algorithm with efficient convergence for UCAV formation in beyond-visual-range air combat based on multi-agent reinforcement learning  

在线阅读下载全文

作  者:Yaoming ZHOU Fan YANG Chaoyue ZHANG Shida LI Yongchao WANG 

机构地区:[1]School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China [2]Key Laboratory of Industrial Control Technology,Institute of Cyber-Systems and Control,Zhejiang University,Hangzhou 310027,China

出  处:《Chinese Journal of Aeronautics》2024年第8期311-328,共18页中国航空学报(英文版)

基  金:co-supported by the National Natural Science Foundation of China(No.52272382);the Aeronautical Science Foundation of China(No.20200017051001);the Fundamental Research Funds for the Central Universities,China.

摘  要:Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms.

关 键 词:Unmanned combat aerial vehicle(UCAV)formation DECISION-MAKING Beyond-visual-range(BVR)air combat Advantage highlight Multi-agent reinforcement learning(MARL) 

分 类 号:V279[航空宇航科学与技术—飞行器设计] V249.1

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象