检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Frederik WIESMANN Zeyan QIU Dong HAN Lukas STRAUβ Sebastian RIEβ Michael WENSING Thomas LAUER
机构地区:[1]Institute of Powertrains and Automotive Technology,TU Wien,1060 Vienna,Austria [2]Key Laboratory for Power Machinery and Engineering of Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240,China [3]Professorship for Fluid Systems Technology,Friedrich-AlexanderUniversität Erlangen-Nürnberg,91058 Erlangen,Germany
出 处:《Frontiers in Energy》2024年第4期483-505,共23页能源前沿(英文版)
摘 要:For a climate-neutral future mobility,the socalled e-fuels can play an essential part.Especially,oxygenated e-fuels containing oxygen in their chemical formula have the additional potential to burn with significantly lower soot levels.In particular,polyoxymethylene dimethyl ethers or oxymethylene ethers(PODEs or OMEs)do not contain carbon-carbon bonds,prohibiting the production of soot precursors like acetylene(C_(2)H_(2)).These properties make OMEs a highly interesting candidate for future climate-neutral compression-ignition engines.However,to fully leverage their potential,the auto-ignition process,flame propagation,and mixing regimes of the combustion need to be understood.To achieve this,efficient oxidation mechanisms suitable for computational fluid dynamics(CFD)calculations must be developed and validated.The present work aims to highlight the improvements made by developing an adapted oxidation mechanism for OME1-6 and introducing it into a validated spray combustion CFD model for OMEs.The simulations were conducted for single-and multi-injection patterns,changing ambient temperatures,and oxygen contents.The results were validated against high-pressure and high-temperature constantpressure chamber experiments.OH*-chemiluminescence measurements accomplished the characterization of the auto-ignition process.Both experiments and simulations were conducted for two different injectors.Significant improvements concerning the prediction of the ignition delay time were accomplished while also retaining an excellent agreement for the flame lift-off length.The spatial zones of high-temperature reaction activity were also affected by the adaption of the reaction kinetics.They showed a greater tendency to form OH^(*) radicals within the center of the spray in accordance with the experiments.
关 键 词:oxygenated fuels reaction kinetics oxidation mechanisms computational fluid dynamics(CFD) oxymethylene ethers(OME) e-fuels multiinjection spray-combustion
分 类 号:TK01[动力工程及工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49