检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋林[1,2] 李国龙 王时龙[1] 徐凯[3] 李喆裕 JIANG Lin;LI Guo-long;WANG Shi-long;XU Kai;LI Zhe-yu(College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044,China;Chongqing Machine Tool(group)Co.,Ltd.,Chongqing,401300;College of Mechanical Engineering,Chongqing University of Techology,Chongqing 400054,China)
机构地区:[1]重庆大学机械与运载工程学院,重庆400044 [2]重庆机床(集团)有限责任公司,重庆401300 [3]重庆理工大学机械工程学院,重庆400054
出 处:《吉林大学学报(工学版)》2024年第8期2149-2155,共7页Journal of Jilin University:Engineering and Technology Edition
基 金:国家重点研发计划项目(2020YFE0201000).
摘 要:为进一步提高磨齿机进给轴热误差模型的预测精度,本文提出了基于主成分回归的进给轴热膨胀误差建模方法。通过线性拟合对进给轴定位误差解耦得到热膨胀斜率参数,消除进给轴热膨胀误差的位置相关性,并基于主成分回归算法建立了热膨胀斜率参数与全部测点温度的回归模型。区别于传统方法,主成分回归模型无须进行额外的温度敏感点筛选,分组实验预测结果的均方根误差均值和标准差可达到2.0μm/m、0.9μm/m,具有更高的精度和稳定性。To further improve the prediction accuracy of the thermal error model of the feed axis of the gear grinding machine,a thermal expansion modeling method of the feed axis based on principal component regression is proposed in this paper.The slope parameter of thermal expansion is obtained by decoupling the positioning error of the feed axis through a linear fitting,which eliminates the position correlation between the thermal expansion error and the position of feed axis.The regression model between the thermal expansion slope and all the temperature points is established using the principal component regression algorithm.Different from the traditional methods,the principal component regression model does not need additional screening of temperature sensitive points,and the mean value and standard deviation of the root means square errors of the prediction results can reach 2.0μm/m、0.9μm/m,which has higher accuracy and stability than conventional methods.
分 类 号:TH161[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.242.128