基于改进的TF-IDF标签权重算法的电商用户画像构建  

在线阅读下载全文

作  者:白雨珂 卢胜男[1] BAI Yuke;LU Shengnan

机构地区:[1]西安石油大学,陕西西安710065

出  处:《信息技术与信息化》2024年第8期48-51,共4页Information Technology and Informatization

摘  要:在电商环境中,用户画像构建是为了更好地理解和满足用户需求而进行的重要任务。传统的TF-IDF标签权重计算方法无法很好地对标签权重进行调整,为了解决这一问题,提出基于TF-IDF算法的改进方法,旨在提高用户画像的准确性和个性化程度。融合相关系数矩阵,对相关性强的标签进行适当降权操作。不同类型的行为对标签信息产生不同的权重,并且标签的权重可能会随着时间的推移而衰减。因此,采用拟合记忆遗忘曲线模拟得到的兴趣遗忘曲线,对用户画像权重进行调优操作。实验结果表明,使用所提出的改进的TF-IDF算法构建用户画像的效果得到显著的提升。

关 键 词:电商 相关系数 标签权重 用户画像 TF-IDF算法 

分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象