检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈晓萌 朱宗玖[1] 徐圆圆 CHEN Xiaomeng;ZHU Zongjiu;XU Yuanyuan(College of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China;Sungrow Power Supply Co.,Ltd.,Hefei 231200,China)
机构地区:[1]安徽理工大学电气与信息工程学院,安徽淮南232001 [2]阳光电源股份有限公司,安徽合肥231200
出 处:《邵阳学院学报(自然科学版)》2024年第4期21-29,共9页Journal of Shaoyang University:Natural Science Edition
摘 要:精确地预测光伏发电功率是保证电力系统稳定运行的关键。为改善光伏发电功率的预测的准确性,通过引入人工大猩猩部队优化(artificial gorilla troops optimizer,GTO)算法和变分模态分解(variational mode decomposition,VMD),提出了一种基于卷积神经网络(convolutional neural networks,CNN)和门控循环单元(gated recurrent unit,GRU)神经网络的组合预测模型(GTO-VMD-CNN-GRU)。研究基于皮尔逊相关系数的气象特征量提取方法,获取特征重要性并作为模型输入,针对VMD和模型参数手动设置的复杂性和不确定性,利用GTO对变分模态分解数量和惩罚因子进行寻优来确定最优组合,并对CNN-GRU模型主要超参数进行寻优。对光伏输出功率的预测进行分析,结果表明,GTO-VMD-CNN-GRU预测模型能有效提升光伏输出功率预测精度,再通过与其他4种方法的预测效果比较,发现所提方法各项误差指标表现最好,因此,优化后的模型可靠性更强。Accurate prediction of photovoltaic(PV)power is the key to ensuring the stable operation of the power system.To improve the accuracy of PV power prediction,by introducing an artificial gorilla troops optimizer(GTO)algorithm and variational mode decomposition(VMD),a combined prediction model(GTO-VMD-CNN-GRU)based on convolutional neural networks(CNN)and gated recurrent unit(GRU)neural networks was proposed.In this study,the quantitative meteorological feature extraction method based on Pearson s correlation coefficient was used to obtain feature importances for use as model inputs.To address the complexity and uncertainty of manual settings of VMD and model parameters,GTO was used to optimize the number of VMD and penalty factors to determine the optimal combination,and the main hyperparameters of the CNN-GRU model was optimized.By analyzing the predictions of PV output power,the results show that the CTO-VMD-CNN-GRU prediction model effectively improves the accuracy of PV output power predictions.By comparing the prediction effects with those of the other four methods,it was found that the proposed method performed the best in every error index.Therefore,the optimized model is more reliable.
关 键 词:门控循环单元 变分模态分解 算术优化算法 光伏发电功率预测
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49