检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹金碧 黄亚南 刘耀瞳 Cao Jinbi;Huang Yanan;Liu Yaotong(School of Electrical and Control Engineering,Liaoning Technical University,Huludao Liaoning 125105,China)
机构地区:[1]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105
出 处:《现代工业经济和信息化》2024年第8期164-165,168,共3页Modern Industrial Economy and Informationization
摘 要:该模型旨在提高风电功率预测的准确性和稳定性,以应对风电场运行中的不确定性和波动性。介绍了粒子群优化算法、反向传播算法的原理,在此基础上分析影响风电场的输出功率的主要因素,构建数学函数式,通过多元线性拟合,来解析风电功率与相关因素之间的函数关系设计BP神经网络的结构,并利用PSO算法对神经网络的初始权值和阈值进行优化,使该模型能够更准确地拟合实际风电功率与理论风电功率关系。The model aims to improve the accuracy and stability of wind power prediction to cope with the uncertainty and volatility in wind farm operation.The principles of particle swarm optimization algorithm and back propagation algorithm are introduced,based on which the main factors affecting the output power of wind farms are analysed,the mathematical functional equation is constructed,and the functional relationship between wind power and related factors is resolved by multivariate linear fitting Design of the structure of BP neural network,and the PSO algorithm is used for the optimization of initial weights and thresholds of the neural network.It can more accurately fit the relationship between actual wind power and theoretical wind power.
关 键 词:风电功率预测 粒子群优化算法 反向传播算法 多元线性拟合
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7