检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuze Peng Shengjun Xu Qingkun Chen Wenjin Huang Yihua Huang
机构地区:[1]School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou 510006,China [2]Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems,Sun Yat-sen University,Guangzhou 510006,China,and Southern Marine Science and Engineering Guangdong Laboratory,Zhuhai 519080,China
出 处:《Tsinghua Science and Technology》2024年第4期971-984,共14页清华大学学报自然科学版(英文版)
基 金:supported by the National Natural Science Foundation of China(No.62276278);Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110006).
摘 要:Popularity plays a significant role in the recommendation system. Traditional popularity is only defined as a static ratio or metric (e.g., a ratio of users who have rated the item and the box office of a movie) regardless of the previous trends of this ratio or metric and the attribute diversity of items. To solve this problem and reach accurate popularity, we creatively propose to extract the popularity of an item according to the Proportional Integral Differential (PID) idea. Specifically, Integral (I) integrates a physical quantity over a time window, which agrees with the fact that determining the attributes of items also requires a long-term observation. The Differential (D) emphasizes an incremental change of a physical quantity over time, which coincidentally caters to a trend. Moreover, in the Session-Based Recommendation (SBR) community, many methods extract session interests without considering the impact of popularity on interest, leading to suboptimal recommendation results. To further improve recommendation performance, we propose a novel strategy that leverages popularity to enhance the session interest (popularity-aware interest). The proposed popularity by PID is further used to construct the popularity-aware interest, which consistently improves the recommendation performance of the main models in the SBR community. For STAMP, SRGNN, GCSAN, and TAGNN, on Yoochoose1/64, the metric P@20 is relatively improved by 0.93%, 1.84%, 2.02%, and 2.53%, respectively, and MRR@20 is relatively improved by 3.74%, 1.23%, 2.72%, and 3.48%, respectively. On Movieslen-1m, the relative improvements of P@20 are 7.41%, 15.52%, 8.20%, and 20.12%, respectively, and that of MRR@20 are 2.34%, 12.41%, 20.34%, and 19.21%, respectively.
关 键 词:POPULARITY Proportional Integral Differential(PID) algorithm session-based recommendation user’s interests
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7