检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马霄飞 周兰江[1] 周蕾越 MA Xiaofei;ZHOU Lanjiang;ZHOU Leiyue(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming,Yunnan 650500,China;Faculty of Electrical and Information Engineering,Oxbridge College of Kunming University of Science and Technology,Kunming,Yunnan 650160,China)
机构地区:[1]昆明理工大学信息与自动化学院,云南昆明650500 [2]昆明理工大学津桥学院电子与信息工程学院,云南昆明650160
出 处:《中文信息学报》2024年第6期96-107,共12页Journal of Chinese Information Processing
基 金:国家自然科学基金(61662040)。
摘 要:实体关系抽取旨在提取实体之间存在的语义关系,这可以为知识图谱、自动问答等下游任务提供支持,在自然语言处理领域具有重要作用。由于当前老挝语实体关系抽取的相关研究十分匮乏,可用数据也十分有限,因此在训练时神经网络无法获取足够的语义信息。针对此问题,该文提出了一种基于PCNN和BiGRU的组合模型的多特征老挝语实体关系抽取方法。首先,将位置特征与音素特征融入到词向量中得到包含多种语义的联合向量;然后,分别使用PCNN模型和BiGRU模型对联合向量进行深层语义的提取,其中PCNN模型能够更好地提取文本中的局部信息,BiGRU模型能够更好地考虑文本的全局信息,之后将两个模型的输出进行拼接,便得到了包含多维度语义信息的句子向量;最后,使用softmax进行多分类计算。实验表明,该文提出的方法,在有限的数据下得到了不错的效果,macro-averaged F1达到了82.25%。Entity relation extraction aims to extract the semantic relations between entities,which can provide support for downstream tasks such as knowledge graphs and automatic question and answer.Due to the lack of research related to entity relation extraction in Lao language with very limited data,this paper proposes a multi-feature Lao entity relation extraction method based on the combined model of PCNN and BiGRU.First,the position feature and phoneme feature are integrated into the word vector to obtain joint vector containing multiple semantics.Then,the PCNN model and the BiGRU model are used to extract the deep semantics of the joint vector,respectively.Among them,the PCNN model can better extract the local information in the text,and the BiGRU model can better consider the global information of the text,and the output of the two models are concatenated to obtain multi-dimensional semantic information.Finally,the softmax is used for multi-class predication.Experiments show that the method proposed in this paper has obtained 82.25%macro-averaged F 1 with limited data.
关 键 词:多段卷积神经网络 双向门控循环单元 音素特征 联合向量 层归一化
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.232.123