Preparation and combustion properties of laminated sticks of B-CuO and B-Bi_(2)O_(3)  

在线阅读下载全文

作  者:Haoyu Song Chenyang Li Fubing Gao Chongwei An Shijiao Li Xuan Zhan Jianchen He 

机构地区:[1]School of Environment and Safety Engineering,North University of China,Taiyuan 030051,China [2]Chongqing Military Agency of the Army,Chongqing 400060,China

出  处:《Defence Technology(防务技术)》2024年第8期67-74,共8页Defence Technology

基  金:supported by the Graduate Education Innovation Project of Shanxi Province(Grant No.2022Y650);the National Natural Science Foundation of China(Grant No.22275170)。

摘  要:To explore the composite process of B-CuO and B-Bi_(2)O_(3) two-component laminated sticks,obtain the corresponding sticks with good printing effect,and explore the energy release behavior.In this study,boron,copper oxide,and bismuth trioxide powders were dispersed in the dispersed phase (DMF) using F_(2602) as a binder,and the construction of two-component B-CuO,B-Bi_(2)O_(3),three-component microcomposite,and three-component macro-composite sticks were realized with the help of double nozzle direct ink writing (DIW) technique respectively.The resulting sticks were ignited by a nichrome wire energized with a direct current,and a high-speed camera system was used to record the combustion behavior of the sticks,mark the flame position,and calculate the rate of ignition.The results showed that the B-CuO stick burning rate (42.11 mm·s^(-1)) was much higher than that of B-Bi_(2)O_(3)(17.84 mm·s^(-1)).The formulation with the highest CuO content (ω_(CuO)=58.7%) in the microscale composite of the sticks also had the fastest burning rate of 60.59 mm·s^(-1),as the CuO content decreased (ω_(CuO)=43.5%,29.3%),its burning rate decreased to 34.78 mm·s^(-1),37.97 mm·s^(-1).The stick with the highest copper oxide content(ω_(CuO)=60%) also possessed the highest burning rate (48.84 mm·s^(-1)) in the macro-composite sticks,and the burning rates of the macro-composite sticks with component spacing of 0.1 mm,0.2 mm,and 0.5 mm were 43.34 mm·s^(-1),48.84 mm·s^(-1),and 40.76 mm·s^(-1).

关 键 词:Boron-based thermite Direct ink writing Linear burning rate Multi-component composite 

分 类 号:TQ560.1[化学工程—炸药化工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象