检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:俱莹 陈宇超 田素恒 刘雷[1] 李赞[1] 裴庆祺[1] 王明阳 JU Ying;CHEN Yuchao;TIAN Suheng;LIU Lei;LI Zan;PEI Qingqi;WANG Mingyang(School of Telecommunications Engineering,Xidian University,Xi’an 710077,China;China Gridcom CO.,LTD Shenzhen City,Shenzhen,518000 China;Beijing Institute of Tracking and Communication Technology,Beijing 100085,China)
机构地区:[1]西安电子科技大学通信工程学院,陕西西安710077 [2]深圳市国电科技通信有限公司,广东深圳518000 [3]北京跟踪与通信技术研究所,北京100085
出 处:《通信学报》2024年第8期84-99,共16页Journal on Communications
基 金:国家自然科学基金资助项目(No.62102301,No.62132013);国家杰出青年科学基金项目(延续资助)(No.62425103);科学探索奖基金资助项目。
摘 要:针对移动场景下毫米波安全波束形成的时效性和毫米波动态窃听场景下安全连接的鲁棒性等问题,提出了一种基于决斗双重深度Q网络(D3QN)-深度确定性策略梯度(DDPG)算法的多智能体安全协作通信方案。该方案利用路侧单元(RSU)辅助的协作干扰技术降低窃听者对合法信号的接收质量,并通过联合优化车辆用户(VU)的基站与波束连接控制、阻塞RSU的选择,以及RSU的协作干扰方向和发射功率控制,使得所有合法车辆的总保密传输速率最大化。在此基础上,针对车联网的高动态性,通过构建基于D3QN的VU智能体和基于D3QN-DDPG的RSU智能体,实现了实时的离散-连续混合决策。最后,通过多维度的性能分析和方案对比实验,验证了所提方案的有效性。For the timeliness of millimeter-wave secure beamforming in mobile scenarios and the robustness of secure connections in millimeter-wave dynamic eavesdropping scenarios,a multi-agent secure cooperative communication scheme based on a dueling double deep Q network(D3QN)-deep deterministic policy gradient(DDPG)algorithm was proposed to address communication security issues.The scheme utilized road side unit(RSU)-assisted cooperative jamming technology to reduce the eavesdropper’s reception quality of confidential signals.The optimization problem was formulated to maximize the total secrecy rate of all legitimate vehicles by optimizing the joint base station and beam connection control of the VUs,the selection of the jamming RSUs,and the cooperative jamming direction and transmit power of RSUs.Furthermore,for the challenges posed by the high dynamics of vehicular networks,the scheme achieved a fusion of real-time discrete and continuous decision-making by creating a VU agent grounded in D3QN and an RSU agent harnessing D3QN-DDPG capabilities.Finally,through multi-dimensional performance analysis and scheme comparison experiments,simulation results demonstrate the effectiveness of the proposed scheme.
关 键 词:毫米波车联网 多智能体 物理层安全 深度强化学习
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15