检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张宇娇 孙宏达 赵志涛 徐斌 黄雄峰 Zhang Yujiao;Sun Hongda;Zhao Zhitao;Xu Bin;Huang Xiongfeng(School of Electrical and Automation Engineering Hefei University of Technology,Hefei 230009 China)
机构地区:[1]合肥工业大学电气与自动化工程学院,合肥230009
出 处:《电工技术学报》2024年第17期5251-5261,共11页Transactions of China Electrotechnical Society
基 金:国家自然科学基金资助项目(523770058)。
摘 要:物理信息神经网络(PINNs)将偏微分方程(PDEs)及其定解条件编码进网络中,使PDEs残差最小化的同时逼近定解条件,实现PDEs的求解。由于电磁场计算时存在局部高梯度问题、含源方程引发的训练困难问题和高对比系数界面识别问题等,PINNs在用于电磁场方程求解时训练效率低、计算精度不高,因而目前应用较少。该文对于PINNs在电磁场中的训练困难问题进行理论分析,提出了针对电磁场PDEs形式和神经网络架构的修改方法,实现了基于PINNs的静电场和稳恒磁场求解,计算结果准确性较好。将该方法推广到方程更加复杂的频域涡流场求解中,求解结果表明PINNs可以在复杂的频域方程上保证良好的精度。该研究工作为实现电磁场快速计算提供了新思路。In recent years,the advent of language models such as GPT and Sora has underscored the computational prowess of data-driven models within high-dimensional parameter spaces.This has positioned them as the forefront of electromagnetic optimization design,and serves the fast computation of electromagnetic fields.However,the efficacy of these data-driven models hinges significantly on labeled data,and they grapple with challenges such as overfitting and a lack of physical understanding.Diverging from natural language processing(NLP),physical fields are usually described by a set of partial differential equations,the emergence of physics informed neural networks(PINNs)addresses this gap.The core concept of PINNs involves incorporating control equations into the neural network's loss function.This integration ensures that the network output approximates boundary conditions while adhering to the control equations within the solution domain.Nevertheless,PINNs encounter hurdles such as local high gradient issues,training complexities arising from source equations,and difficulties in identifying interfaces with high-contrast coefficients in electromagnetic field computations.Consequently,the training efficiency and computational accuracy of PINNs in solving electromagnetic field equations remain suboptimal,limiting their current applications.In order to use PINNs for the stabilization training of electromagnetic fields,this paper firstly explores a method for handling zero-value boundary conditions in electromagnetic fields by employing a fully connected neural network architecture with hard boundaries.This approach effectively eliminates boundary loss in the total loss function.Taking electrostatic field equations with sources as an illustration,the L2 error using this method against the analytical solution is 9.15×10-6,with almost complete satisfaction of boundary conditions.Recognizing the neural network's inclination to prioritize low-frequency or large-scale features,the paper introduces embedded Fourier features to
分 类 号:TM15[电气工程—电工理论与新技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145