基于重叠Ket增强和张量列车的非平衡频谱制图算法  

Unbalanced Spectrum Cartography Algorithm Based on Overlapping Ket Augmentation and Tensor Train

在线阅读下载全文

作  者:王欣 申滨[1,2] 黄晓舸 WANG Xin;SHEN Bin;HUANG Xiao-ge(School of Communications and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Key Laboratory of Mobile Communications Technology,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]移动通信技术重庆市重点实验室,重庆400065

出  处:《电子学报》2024年第7期2468-2476,共9页Acta Electronica Sinica

基  金:国家自然科学基金(No.62371082)~~。

摘  要:近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度.Spectrum cartography based on tensor completion algorithms has been widely studied in recent years.Most of the current tensor completion algorithms for spectrum cartography implicitly assume that the tensor is balanced.It may not be possible to take advantage of unbalanced tensors'low-rank nature to estimate the entire tensor information,lead⁃ing to performance degradation.This paper proposes an unbalanced spectrum cartography algorithm based on overlapping Ket augmentation(OKA)and tensor train(TT)to address the performance degradation of unbalanced tensors when apply⁃ing traditional tensor completion algorithms.Firstly,OKA is used to represent the low-order high-dimensional tensor as a high-order low-dimensional tensor,which solves the problem that the unbalanced tensor is unable to utilize its low-rank na⁃ture for tensor completion without information loss.Secondly,the use of TT matricization to obtain more balanced matrices improves the accuracy of the completion algorithm under more balanced dimensionality conditions.Finally,using the lowrank nature of the high-order low-dimensional tensor,the tensor completion is accomplished using the parallel matrix factor⁃ization or Frobenius norm based singular value decomposition free(SVDFree)algorithm.Simulation results show that for unbalanced tensors,the proposed scheme can obtain more accurate radio maps compared to existing tensor completion algo⁃rithms,while the proposed SVDFree algorithm has lower computing complexity.

关 键 词:频谱制图 张量补全 张量列车 重叠Ket增强 并行矩阵分解 奇异值分解 

分 类 号:TN929.5[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象