混合BERT和宽度学习的低时间复杂度短文本分类  被引量:1

Low time complexity short text classification based on fusion of BERT and broad learing

在线阅读下载全文

作  者:陈晓江 杨晓奇 陈广豪 刘伍颖 CHEN Xiaojiang;YANG Xiaoqi;CHEN Guanghao;LIU Wuying(Information Department,Jieyang Campus of Guangdong Open University,Jieyang 522095,Guangdong,China;School of Information Science and Technology,Guangdong University of Foreign Studies,Guangzhou 510006,Guangdong,China;Department of Software Engineering,Software Engineering Institute of Guangzhou,Guangzhou 510990,Guangdong,China;Shandong Key Laboratory of Language Resources Development and Application,Ludong University,Yantai 264025,Shandong,China;Center for Linguistics and Applied Linguistics,Guangdong University of Foreign Studies,Guangzhou 510420,Guangdong,China)

机构地区:[1]广东开放大学揭阳分校信息科,广东揭阳522095 [2]广东外语外贸大学信息科学与技术学院,广东广州510006 [3]广州软件学院软件工程系,广东广州510990 [4]鲁东大学山东省语言资源开发与应用重点实验室,山东烟台264025 [5]广东外语外贸大学外国语言学及应用语言学研究中心,广东广州510420

出  处:《山东大学学报(工学版)》2024年第4期51-58,66,共9页Journal of Shandong University(Engineering Science)

基  金:教育部新文科研究与改革实践资助项目(2021060049);教育部人文社会科学研究青年基金资助项目(20YJC740062);教育部人文社会科学研究规划基金资助项目(20YJAZH069);山东省研究生教育教学改革研究资助项目(SDYJG21185);山东省本科教学改革研究重点资助项目(Z2021323);上海市哲学社会科学“十三五”规划课题资助项目(2019BYY028);广州市科技计划资助项目(202201010061)。

摘  要:针对短文本分类任务效率低下和精度不高的问题,提出混合基于Transformer的双向编码器表示和宽度学习分类器(hybrid bidirectional encoder representations from transformer and broad learning, BERT-BL)的高效率和高精度文本分类模型。对基于Transformer的双向编码器表示(bidirectional encoder representation from transformer, BERT)进行微调以更新BERT的参数。使用微调好的BERT将短文本映射成对应的词向量矩阵,将词向量矩阵输入宽度学习(broad learning, BL)分类器中以完成分类任务。试验结果显示,BERT-BL模型在3个公共数据集上的准确率均达到最优;所需要的时间仅为基线模型支持向量机(support vector machine, SVM)、长短期记忆网络(long short-term memory, LSTM)、最小p范数宽度学习(minimum p-norm broad learning,p-BL)和BERT的几十分之一,而且训练过程不需要高性能显卡的参与。通过对比分析,BERT-BL模型不仅在短文本任务中具有良好的性能,而且能节省大量训练时间成本。To address the issues of low efficiency and low accuracy in short text classification(STC)tasks,a high-efficiency and high-precision text classification model was proposed that combined transformer based on bidirectional encoder representations and broad learning classifiers(BERT-BL).Through the process of fine-tuning the bidirectional encoder representation from transformer(BERT)based on transformer,the parameters of BERT could be updated to optimize its performance.Utilized fine-tuned BERT to map the short text to its respective word vector matrix,then input it into the BL classifier to classify.The experimental results showed that the accuracy of the BERT-BL model reached state-of-art performance on three public datasets respectively. The mainfinding was that the BERT-BL model took only a few tenths of the time required to baseline models of support vector machine( SVM), long short-term memory (LSTM), minimum p-norm broad learning (p-BL) and BERT, and its training process did notrequire the participation of a graphics processing unit. Through comparative analysis, the BERT-BL model not only had goodperformance in STC, but also can save a lot of training time cost.

关 键 词:短文本分类 BERT-BL BERT 宽度学习 高精度 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象