Optimality of Group Testing with Differential Misclassification  

组检验在差异化误分类下的最优性

在线阅读下载全文

作  者:LI Yiming ZHANG Hong LIU Aiyi 李一鸣;张洪;刘爱义(中国科学技术大学管理学院统计与金融系,合肥230000;美国国家儿童健康和人类发展研究所生物统计与生物信息部)

机构地区:[1]Department of Statistics and Finance,School of Management,University of Science and Technology of China,Hefei,230026,China [2]Biostatistics and Bioinformatics Branch,National Institute of Child Health and Human Development,USA

出  处:《应用概率统计》2024年第4期644-662,共19页Chinese Journal of Applied Probability and Statistics

基  金:supported by the National Natural Science Foundation of China(Grant No.72091212).

摘  要:Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature only demonstrated the optimality of group testing strategy while estimating prevalence under some strong assumptions.This article weakens the assumption of misclassification rate in the previous literature,considers the misclassification rate of the infected samples as a differentiable function of the pool size,and explores some optimal properties of group testing for estimating prevalence in the presence of differential misclassification conforming to this assumption.This article theoretically demonstrates that the group testing strategy performs better than the sample by sample procedure in estimating disease prevalence when the total number of sample pools is given or the size of the test population is determined.Numerical simulation experiments were conducted to evaluate the performance of group tests in estimating prevalence in the presence of dilution effect.组检验是可以用来估计罕见传染疾病发病率的一种方法,相比于样本单独检测的方法来说,它可以有效地节省时间和降低成本.然而,以往的文献中只证明了用组检验策略估计发病率在一些较强假设下的最优性质.本文弱化了以往文献中对误分类率条件的假定,把检测对样本染病状态的误分类率当成样本池中样本数的可微函数,探讨了组检验程序在存在符合该假定的差异化误分类的情况下,估计疾病发病率时的一些最优性质.本文从理论上证明了,当给定样本池总数或检测群体规模确定时,在估计疾病发病率方面组检验策略表现更优于逐个样本检测程序.本文还通过数值模拟实验,探讨了当稀释作用存在时,用组检验估计发病率的表现.

关 键 词:group testing sensitivity SPECIFICITY dilution effect differential misclassification PREVALENCE 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象