检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡海莹 周博 张四新 Hu Haiying;Zhou Bo;Zhang Sixin
机构地区:[1]湖北文理学院图书馆,湖北襄阳441053 [2]湖北文理学院机械工程学院,湖北襄阳441053
出 处:《新世纪图书馆》2024年第8期54-61,共8页New Century Library
基 金:湖北省中青年科技创新团队计划项目“汉江流域资源环境与区域发展”(项目编号:T202314);2020年湖北省高校图工委科研基金项目“后疫情时代的高校图书馆阅读疗法服务研究”(项目编号:2020-YB-08)研究成果之一。
摘 要:图书采购是丰富馆藏资源的一种重要活动,但是哪些图书该采购,成为了图书采购管理工作中的难题。针对该问题,论文提出一种基于COA-CNN-GRU神经网络的图书推荐方法。首先,利用灰色关联分析提取图书借阅数据中影响采购的关键因素。接着,通过COA算法优化CNN-GRU模型,构建了针对图书采购的推荐模型。以湖北文理学院图书馆为例,对约11,000种图书的借阅记录进行7:3划分,形成训练集(7,700种)与测试集(3,300种)。实验证明,该模型训练精度高达90.06%,展现出卓越的预测性能与泛化能力,为图书采购管理提供了科学、高效的决策工具。Acquiring books is a vital endeavor for enhancing library collections,yet determining the most suitable titles for procurement poses a significant challenge in book acquisition management.To tackle this challenge,this paper proposes a novel book recommendation system grounded in a hybrid COA-CNN-GRU neural network architecture.Firstly,the key factors affecting the procurement of books in the book borrowing data are extracted by using gray correlation analysis.Then,the recommendation model for book purchasing is constructed by optimizing the CNN-GRU model through the COA algorithm.Taking the library of Hubei College of Arts and Sciences as an example,the borrowing records of about 11,000 kinds of books were divided 7:3 to form a training set(7,700 kinds)and a test set(3,300 kinds).The experiment proves that the training accuracy of the model is as high as 90.06%,showing excellent prediction performance and generalization ability,which provides a scientific and efficient decision-making tool for book procurement management.
关 键 词:图书采购 推荐模型 COA-CNN-GRU 神经网络
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49