检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《eLight》2023年第1期211-229,共19页e光学(英文)
基 金:NIH R35GM136223;R01EB032391 to J.X.C.
摘 要:Coherent Raman scattering(CRS)microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations.To date,endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis.Nevertheless,the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system,which trades off speed,signal fidelity and spectral bandwidth.The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off.In this review,we first introduce coherent Raman scattering and recent instrumentation developments,then discuss current computational CRS imaging methods,including compressive micro-spectroscopy,computational volumetric imaging,as well as machine learning algorithms that improve system performance and decipher chemical information.We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy.
关 键 词:Coherent anti-Stokes Raman scattering Stimulated Raman scattering Computational imaging Hyperspectral imaging Deep learning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31