面向多租户数据中心的联邦学习架构下通信开销优化方法  被引量:1

Optimization method for communication overhead in federated learningarchitecture for multi-tenant data center

在线阅读下载全文

作  者:程华盛 敬超[1,2] Cheng Huasheng;Jing Chao(School of Computer Science&Engineering,Guilin University of Technology,Guilin Guangxi 541004,China;Guangxi Key Laboratory of Embedded Technology&Intelligent System,Guilin University of Technology,Guilin Guangxi 541004,China)

机构地区:[1]桂林理工大学计算机科学与工程学院,广西桂林541004 [2]桂林理工大学广西嵌入式技术与智能系统重点实验室,广西桂林541004

出  处:《计算机应用研究》2024年第9期2823-2830,共8页Application Research of Computers

基  金:国家自然科学基金资助项目(62362018);广西重点研发计划资助项目(桂科AB23075116,桂科AB23075175);广西研究生教育创新计划资助项目(YCSW2023350)。

摘  要:为降低多租户数据中心联邦学习架构下的高通信开销问题,提出一种基于三元演化模型参数的通信开销优化算法。首先,建立面向多租户数据中心的联邦学习架构模型来实现数据隐私保护;其次,针对联邦学习架构的引入导致租户和数据中心交互产生了过高的通信开销问题,提出一种基于三元演化模型参数的通信开销优化算法,通过结合最优局部模型和三元向量化模型参数的演化方向来减少租户与数据中心模型参数传输之间的冗余通信;同时,基于联邦学习的隐私研究论证分析了在传输通信过程中所提算法能有效保障参与训练租户的隐私信息。最后,实验结果表明,所提方法在保障训练精度的前提下,相比于联邦平均对比算法能有效降低30%的冗余通信开销。To address the issue of high communication cost under the federated learning framework in multi-tenant data centers,this paper proposed an optimization algorithm based on ternary evolutionary model parameters.Firstly,it constructed a federated learning architecture tailored to multi-tenant data centers for data privacy protection.Secondly,in response to the excessive communication overhead stemming from the implementation of the federated learning framework,which increasing interactions between tenants and the data center,it proposed an optimization algorithm that utilized ternary evolutionary model parameters.This algorithm aimed to reduce redundant communication in the exchange of model parameters between tenants and the data center by integrating the optimal local model with the evolutionary direction of ternary vectorized model parameters.Moreover,by analyzing privacy research based on federated learning,the algorithm effectively ensured the privacy of tenants participating in the training during the communication process.Finally,experimental results demonstrate that,while maintaining training accuracy,the proposed method can effectively reduce redundant communication costs by 30%compared to the federated averaging baseline algorithm.

关 键 词:多租户数据中心 联邦学习 通信开销优化 三元演化模型参数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象