On the analytical soliton approximations to fractional forced Korteweg-de Vries equation arising in fluids and plasmas using two novel techniques  

在线阅读下载全文

作  者:Weaam Alhejaili Emad A Az-Zo’bi Rasool Shah S A El-Tantawy 

机构地区:[1]Department of Mathematical Sciences,College of Science,Princess Nourah bint Abdulrahman University,PO Box 84428,Riyadh 11671,Saudi Arabia [2]Department Mathematics and Statistics,Mutah University,Al-Karak,Jordan [3]Department of Computer Science and Mathematics,Lebanese American University,Beirut,Lebanon [4]Department of Physics,Faculty of Science,Port Said University,Port Said 42521,Egypt [5]Department of Physics,Faculty of Science,Al-Baha University,Al-Baha P.O.Box 1988,Saudi Arabia

出  处:《Communications in Theoretical Physics》2024年第8期1-10,共10页理论物理通讯(英文版)

基  金:Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R229), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia。

摘  要:The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other associated equations are widely acknowledged for their broad applicability and potential for simulating a wide range of nonlinear phenomena in fluid physics, plasma physics, and various scientific domains. Consequently, the main goal of this study is to use the Yang homotopy perturbation method and the Yang transform decomposition method, along with the Caputo operator for analyzing the FF-KdV equation. The derived approximations are numerically examined and discussed. Our study will show that the two suggested methods are helpful, easy to use, and essential for looking at different nonlinear models that affect complex processes.

关 键 词:forced fractional KdV equation Caputo operator Yang homotopy perturbation method Yang transform decomposition method SOLITONS 

分 类 号:O411.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象