基于区块链的Gossip协议优化研究  

Research on Gossip Protocol Optimization Based on Blockchain

在线阅读下载全文

作  者:徐克圣[1] 王美琦 XU Kesheng;WANG Meiqi(School of Software,Dalian Jiaotong University,Dalian 116028,China)

机构地区:[1]大连交通大学软件学院,辽宁大连116028

出  处:《计算机与网络》2024年第4期345-349,共5页Computer & Network

基  金:辽宁省应用基础研究计划(2022JH21101300269)。

摘  要:Gossip网络协议具有高效性和扩展性,广泛应用于区块链分布式系统的底层通信协议。针对联盟链中Gossip网络协议的冗余现象造成的传播效率下降,提出了Stack Gossip算法。该算法将收到的节点信息记录在信息栈中,避免向一个节点重复发送消息。实验发现,Stack Gossip算法不适用于大规模网络中节点数量过多的情况。为此,进一步提出Influence Gossip算法,其核心思路是节点通过评估邻居节点的信息影响力来选择通信的对等节点,在一定程度上避免了传统Gossip网络协议节点间传播的随机性。实验结果表明,与Random Gossip算法相比,Influence Gossip和Stack Gossip算法传播效率和产生的冗余有明显改进。Gossip network protocol is widely used as the underlying communication protocol of the blockchain distributed system due to its high efficiency and scalability.Since the propagation efficiency is reduced by the redundancy of Gossip network protocol in the alliance chain,Stack Gossip algorithm is proposed.The information of the node receiving the message is recorded in the information stack by the algorithm,in order to avoid repeatedly sending the message to one node.During the experiment,it is found that Stack Gossip algorithm is not suitable for the large-scale network of too many nodes,so Influence Gossip algorithm is further proposed.The core idea of Influence Gossip algorithm is that the peer node to communicate with is selected by the node in the way of evaluating the information influence of the neighbour node,avoiding the randomness of the propagation between the nodes of the traditional Gossip network protocol to some extent.The experimental results show that compared with Random Gossip algorithm,Influence Gossip algorithm and Stack Gossip algorithm have obvious improvement in the propagation efficiency and redundancy.

关 键 词:Influence Gossip算法 Stack Gossip算法 Gossip通信协议 信息影响力 区块链 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象