检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王言国 吕鹏远 兰金江 刘明哲 秦冠军 张硕桦 周宇[3] WANG Yanguo;LÜPengyuan;LAN Jinjiang;LIU Mingzhe;QIN Guanjun;ZHANG Shuohua;ZHOU Yu(NR Engineering Co.,Ltd.,Nanjing 211106,Jiangsu,China;China Three Gorges Renewables(Group)Co.,Ltd.,Beijing 101100,China;College of Computer Science and Technology/College of Artificial Intelligence,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,Jiangsu,China)
机构地区:[1]南瑞继保工程技术有限公司,江苏南京211106 [2]中国三峡新能源(集团)股份有限公司,北京101100 [3]南京航空航天大学计算机科学与技术学院/人工智能学院,江苏南京211106
出 处:《计算机工程》2024年第9期377-384,共8页Computer Engineering
基 金:国家重点研发计划(2020YFE0200400);江苏省自然科学基金(BK20201292)。
摘 要:风力发电机故障分类的复杂性和多样性严重影响风能发电效率,传统的人工方法效率低下,准确率较低,已有的深度学习模型在真实环境中易受数据噪声干扰而表现不佳。为提升风力发电机故障分类模型在真实环境下的分类性能与鲁棒性,提出一种基于对抗训练与Transformer的故障分类方法。首先通过引入一维卷积与门控线性单元(GLU)增强注意力机制对局部特征的学习,保留易被忽略的局部信息,提升模型对于局部特征的敏感度。其次结合限制因子约束对抗样本,提高对抗样本产生的准确性。最后在消除错误样本的同时反馈生成过程,使其具备更好的抗干扰能力。实验结果表明,与5种常用的分类模型相比,所提模型分类性能平均提升7.76%,与真实结果之间的误差最小。局部增强的注意力机制和所提的对抗训练方法分别使模型的分类性能平均提升4.51%、4.95%。所提模型在10%~20%噪声环境中仍保持较好性能,增强了其在真实环境中的稳定性。该方法在提高分类准确率的同时使模型具备更强的泛化能力,对于提升风力发电机故障分类性能与鲁棒性具有重要意义。The complexity and diversity of wind turbine fault classification severely affect the efficiency of wind power generation.Conventional manual methods display low efficiency and accuracy.Existing deep learning models perform ineffectively in real environments owing to the data noise interference.To improve the classification performance and robustness of wind turbine fault classification models in real environments,this paper proposes a fault classification method based on adversarial training and Transformer.First,by introducing a one-dimensional convolution and Gated Linear Unit(GLU)enhanced attention mechanism for learning local features,the paper improves the sensitivity of the model to local features by retaining local information that is overlooked straightforwardly.Second,combining with constraint factor-constrained adversarial samples improves the accuracy of adversarial sample generation.Finally,while eliminating incorrect samples,the feedback generation process enhances its anti-interference capability.The experimental results reveal that compared with five commonly used classification models,the proposed model achieves an average improvement in classification performance of 7.76%and minimal error compared with actual results.The locally enhanced attention mechanism and proposed adversarial training method improve the average classification performance of the model by 4.51%and 4.95%,respectively.The proposed model still maintains good performance in a noise environment ranging from 10%to 20%.This enhances its stability in real environments.The method improves the accuracy and enhances the generalization capability of the model.This is significant for improving wind turbine fault classification performance and robustness.
关 键 词:风力发电机 门控线性单元 Transformer模型 对抗训练 故障分类
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104